COMMUNICATIONS
p) Y. Liu, K. Yang, H. Ge, Chem. Sci. 2016, 7, 2804–
2808.
Experimental Section
[2] For selected examples of Daugulisꢀ 8-aminoquinoline
based C–H functionalization see: a) V. G. Zaitsev, D.
Shabashov, O. Daugulis, J. Am. Chem. Soc. 2005, 127,
13154–13155; b) D. Shabashov, O. Daugulis, J. Am.
Chem. Soc. 2010, 132, 3965–3972; c) E. T. Nadres,
G. I. F. Santos, D. Shabashov, O. Daugulis, J. Org.
Chem. 2013, 78, 9689–9714; d) R. Shang, L. Ilies, A.
Matsumoto, E. Nakamura, J. Am. Chem. Soc. 2013,
135, 6030–6032.
[3] For selected examples on b-C—H functionalization
see: a) L. V. Desai, K. L. Hull, M. S. Sanford, J. Am.
Chem. Soc. 2004, 126, 9542–9543; b) N. Hasegawa, V.
Charra, S. Inoue, Y. Fukumoto, N. Chatani, J. Am.
Chem. Soc. 2011, 133, 8070–8073; c) F.-J. Chen, S.
Zhao, F. Hu, K. Chen, Q. Zhang, S.-Q. Zhang, B.-F.
Shi, Chem. Sci. 2013, 4, 4187–4192; d) Y. Aihara, N.
Chatani, J. Am. Chem. Soc. 2014, 136, 898–901; e) M.
Tobisu, N. Chatani, Science 2014, 343, 850; f) X. Wu, Y.
Zhao, H. Ge, J. Am. Chem. Soc. 2014, 136, 1789–1792;
g) M. Li, J. Dong, X. Huang, K. Li, Q. Wu, F. Song, J.
You, Chem. Commun. 2014, 50, 3944–3946; h) Z.
Wang, J. Ni, Y. Kuninobu, M. Kanai, Angew. Chem.
2014, 126, 3564–3567; Angew. Chem. Int. Ed. 2014, 53,
3496–3499.
[4] For selectied examples of directed g-C–H functionaliza-
tion see: a) M. Fan, D. Ma, Angew. Chem. 2013, 125,
12374–12377; Angew. Chem. Int. Ed. 2013, 52, 12152–
12155; b) Q. Li, S.-Y. Zhang, G. He, W. A. Nack, G.
Chen, Adv. Synth. Catal. 2014, 356, 1544–1548; c) K. K.
Pasunooti, B. Banerjee, T. Yap, Y. Jiang, C.-F. Liu, Org.
Lett. 2015, 17, 6094–6097; d) P.-X. Ling, S.-L. Fang, X.-
S. Yin, K. Chen, B.-Z. Sun, B.-F. Shi, Chem. Eur. J.
2015, 21, 17503–17507; e) M. Li, Y. Yang, D. Zhou, D.
Wan, J. You, Org. Lett. 2015, 17, 2546–2549; f) P.-L.
Wang, Y. Li, Y. Wu, C. Li, Q. Lan, X.-S. Wang, Org.
Lett. 2015, 17, 3698–3701; g) J. Han, Y. Zheng, C.
Wang, Y. Zhu, D.-Q. Shi, R. Zeng, Z.-B. Huang, Y.
Zhao, J. Org. Chem. 2015, 80, 9297–9306; h) C. Wang,
L. Zhang, C. Chen, J. Han, Y. Yao, Y. Zhao, Chem. Sci.
2015, 6, 4610–4614; i) A. M. Hyde, S. L. Buchwald,
Angew. Chem. 2008, 120, 183–186; Angew. Chem. Int.
Ed. 2008, 47, 177–180; j) D. S. Huang, J. F. Hartwig,
Angew. Chem. 2010, 122, 5893–5897; Angew. Chem. Int.
Ed. 2010, 49, 5757–5761; k) G. He, Y. Zhao, S. Zhang,
C. Lu, G. Chen, J. Am. Chem. Soc. 2012, 134, 3–6; l) I.
Franzoni, L. Guenee, C. Mazet, Chem. Sci. 2013, 4,
2619–2624; m) T.-S. Mei, E. W. Werner, A. J. Burckle,
M. S. Sigman, J. Am. Chem. Soc. 2013, 135, 6830–6833;
n) X.-L. Zhou, P.-S. Wang, D.-W. Zhang, P. Liu, C.-M.
Wang, L.-Z. Gong, Org. Lett. 2015, 17, 5120–5123;
o) H. Jiang, J. He, T. Liu, J.-Q. Yu, J. Am. Chem. Soc.
2016, 138, 2055–2059.
General Procedure for g-Arylation of 8-Amino-
quinoline Amide
In a clean, oven-dried screw-cap reaction tube containing
magnetic stir-bar, 3,3-dimethyl-N-(quinolin-8-yl)butanamide
(3) (0.3 mmol), iodoarene (4) (0.1 mmol), Pd(PhCN)2Cl2
(10 mol%, 0.01 mmol), AgOAc (3 equiv., 0.3 mmol),
CF3CO2Na (2 equiv., 0.2 mmol) were added. Solid reagents
were weighed before the liquid reagents. Then t-BuOH
(2.0 mL) was added and the tube was tightly closed by
a screw cap fitted with a rubber septum. Finally, the reaction
tube was placed in a preheated oil bath at 1508C and the
mixture stirred vigorously (900 rpm) for 24 h. After comple-
tion, the reaction mixture was cooled to room temperature
and filtered through pad of Celite and ethyl acetate
(15 mL). This filtrate was concentrated under reduced pres-
sure and purified by column chromatography through silica
gel using petroleum ether/ethyl acetate as eluent.
Acknowledgements
This activity is supported by CSIR, India (funding to DM,
CSIR, 02(0242)/15/EMR-II). Financial support received from
CSIR, India (fellowship to AD) and DST-N.P.D.F (fellow-
ship to SG) is gratefully acknowledged.
References
[1] For selected examples of sp2/sp3 C–H functionalization,
see: a) R. J. Phipps, M. J. Gaunt, Science 2009, 323,
1593–1597; b) Y. Feng, G. Chen, Angew. Chem. 2010,
122, 970-973; Angew. Chem. Int. Ed. 2010, 49, 958–961;
c) H. A. Duong, R. E. Gilligan, M. L. Cooke, R. J.
Phipps, M. J. Gaunt, Angew. Chem. 2011, 123, 483–486;
Angew. Chem. Int. Ed. 2011, 50, 463–466; d) Y. Xie, Y.
Yang, L. Huang, X. Zhang, Y. Zhang, Org. Lett. 2012,
14, 1238–1241; e) Z. Ren, F. Mo, G. Dong, J. Am.
Chem. Soc. 2012, 134, 16991–16994; f) G. Mꢂnard,
D. W. Stephan, Angew. Chem. 2012, 124, 4485–4588;
Angew. Chem. Int. Ed. 2012, 51, 4409–4412; g) S.-Y.
Zhang, Q. Li, G. He, W. A. Nack, G. Chen, J. Am.
Chem. Soc. 2013, 135, 12135–12141; h) N. Gigant, J.-E.
Bꢃckvall, Chem. Eur. J. 2013, 19, 10799–10803; i) N.
Hussain, G. Frensch, J. Zhang, P. J. Walsh, Angew.
Chem. 2014, 126, 3767–3771; Angew. Chem. Int. Ed.
2014, 53, 3693–3697; j) A. Deb, S. Bag, R. Kancherla,
D. Maiti, J. Am. Chem. Soc. 2014, 136, 13602–13605;
k) Q. Gu, H. H. Al Mamari, K. Graczyk, E. Diers, L.
Ackermann, Angew. Chem. 2014, 126, 3949–3959;
Angew. Chem. Int. Ed. 2014, 53, 3868–3871; l) S. Maity,
S. Agasti, A. M. Earsad, A. Hazra, D. Maiti, Chem.
Eur. J. 2015, 21, 11320–11324; m) Y. Xu, G. Yan, Z.
Ren, G. Dong, Nat. Chem. 2015, 7, 829–834; n) F. Gao,
B.-S. Kim, P. J. Walsh, Chem. Sci. 2016, 7, 976–983;
o) M. Li, M. Gonzꢄlez-Esguevillas, S. Berritt, X. Yang,
A. Bellomo, P. J. Walsh, Angew. Chem. 2016, 128,
2875–2879; Angew. Chem. Int. Ed. 2016, 55, 2825–2829;
[5] B. V. S. Reddy, L. R. Reddy, E. J. Corey, Org. Lett.
2006, 8, 3391–3394.
[6] N. Rodriguez, J. A. Romero-Revilla, M. A. Fernandez-
Ibanez, J. C. Carretero, Chem. Sci. 2013, 4, 175–179.
[7] a) X. Wang, D. Leow, J.-Q. Yu, J. Am. Chem. Soc. 2011,
133, 13864–13867; b) M. Ye, G.-L. Gao, A. J. F. Ed-
munds, P. A. Worthington, J. A. Morris, J.-Q. Yu, J.
Am. Chem. Soc. 2011, 133, 19090–19093; c) T. M. Figg,
Adv. Synth. Catal. 0000, 000, 0 – 0
6
ꢁ 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!