ChemComm
Communication
SiPh3
Ph
SiPh3
Table 2 ROP of racemic lactide promoted by catalytic systems made of aluminum or indium complexes I
–Al, I –Al, I
–In, II–Al
2
2
and II–In combined with
a
iPrOH
c
d
e
M
n,theo
M
n,NMR
M
n,SEC
a
b
ꢀ1
3
ꢀ1
3
ꢀ1
3
e
Entry [Al]
[LA]–[M]–[iPrOH]
Temp (1C) Time (h) Conv. (%) (g mol ) (ꢁ 10 ) (g mol ) (ꢁ 10 ) (g mol ) (ꢁ 10 )
w n
M /M
SiPh3
SiPh3
SiPh3
SiPh3
SiPh3
SiPh3
SiPh3
SiPh3
SiPh3
Ph
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
I
I
I
I
I
I
I
I
I
I
–Al 500 : 1 : 5
90
100
110
100
120
120
110
110
110
110
90
100
110
120
120
80
70
35
21
18
2
17
2
2
2
8
2
84
70
85
61
17
82
61
60
68
74
33
68
92
78
96
29
63
31
64
12.1
10.1
12.2
8.8
2.4
11.8
8.8
8.5
2.0
10.7
4.8
9.8
13.2
11.2
13.5
4.2
9.0
4.5
9.8
9.8
13.5
nd
2.1
11.4
8.5
5.6
1.3
11.3
5.2
10.1
14.3
nd
10.0
8.9
11.8
5.7
3.0
15.7
6.7
5.8
nd
12.1
4.8
9.7
13.9
12.9
14.3
3.7
7.4
3.2
1.06
1.05
1.09
1.11
1.06
1.33
1.11
1.08
nd
1.06
1.06
1.07
1.29
1.08
1.19
1.10
1.06
1.08
1.05
–Al 500 : 1 : 5
–Al 500 : 1 : 5
–Al 1000 : 1 : 10
–Al 500 : 1 : 5
–Al 500 : 1 : 5
–Al 500 : 3 : 5
–Al 500 : 5 : 5
–Al 500 : 5 : 25
0
1
2
3
4
5
6
7
8
9
–Al
500 : 1 : 5
1000 : 2 : 10
II–Al
II–Al
II–Al
II–Al
II–Al
I
I
2
2
2
2
2
1000 : 2 : 10
1000 : 2 : 10
1000 : 2 : 10
1000 : 2 : 10
2.25
2
1
2
1
2
1
2
13.9
3.7
9.9
4.6
8.2
SiPh3
SiPh3
–In 500 : 1 : 5
–In 500 : 1 : 5
80
80
80
II–In
II–In
2
1000 : 2 : 10
1000 : 2 : 10
2
9.2
6.6
a
b
0
Polymerization conditions unless otherwise stated: reactions performed at [rac-LA] = 2.0 M in toluene. Monomer conversion determined by
d
1
c
H NMR spectroscopy (CDCl
3
, 298 K). Calculated molecular weight calculated using Mn,theo = conv. ꢁ [rac-LA]
0
/[ROH] ꢁ MLA
.
Experimental
e
molecular weight determined by NMR from the relative intensities of the main chain and terminal resonances. Experimental molecular weight
determined by SEC vs. polystyrene standards and corrected by a factor of 0.58.
for In – a change likely related to the impossibility of the In-alkyl to
transform into In-alkoxide species upon combination with an alcohol
(c) E. L. Whitelaw, G. Loraine, M. F. Mahon and M. D. Jones, Dalton
Trans., 2011, 40, 11469; (d) W. Li, W. Wu, Y. Wang, Y. Yao, Y. Zhang and
Q. Shen, Dalton Trans., 2011, 40, 11378; (e) Y. Lei, F. Chen, Y. Luo, P. Xu,
Y. Wang and Y. Zhang, Inorg. Chim. Acta, 2011, 368, 179; ( f ) Y. Wang and
H. Ma, Chem. Commun., 2012, 48, 6729; (g) L. E. N. Allan, J. A. B ´e langer,
L. M. Callaghan, D. J. A. Cameron, A. Decken and M. P. Shaver,
J. Organomet. Chem., 2012, 706–707, 106; (h) X.-F. Yu and Z.-X. Wang,
Dalton Trans., 2013, 42, 3860.
10
under the polymerization conditions ) rather than to the intrinsic
nature of these systems. Further investigations are focused on the
identification of the nature of cooperative effects in the dialuminum
systems and elaboration of other polynuclear precatalysts with
improved performances.
10 M. Normand, V. Dorcet, E. Kirillov and J.-F. Carpentier, Organo-
metallics, 2012, 32, 1694.
1 For an example of a related o,o -dinaphthoxy linker between two cobalt
We thank the MESR and the Universit ´e de Rennes 1 for
funding of this research (PhD grant to M.N.). We also thank
0
1
2
sites used in CO -epoxide copolymerization, see: R. M. Thomas,
Dr Vincent Dorcet for the X-ray diffraction study of II–In
2
.
P. C. B. Widger, S. M. Ahmed, R. C. Jeske, W. Hirahata, E. B. Lobkovsky
and G. W. Coates, J. Am. Chem. Soc., 2010, 132, 16520.
a
Notes and references
12 The typical range of values for barriers of interconversion (DG340) in
ꢀ
1
multisubstituted biphenyls is 14–22 kcal mol , see: G. Bott,
1
(a) M. Delferro and T. J. Marks, Chem. Rev., 2011, 111, 2450;
L. D. Field and S. Sternhell, J. Am. Chem. Soc., 1980, 102, 5618.
(
b) M. P. Weberski Jr., C. Chen, M. Delferro and T. J. Marks, 13 H.-C. Zhang, W.-S. Huang and L. Pu, J. Org. Chem., 2001, 66, 481.
Chem.–Eur. J., 2012, 18, 10715; (c) M. R. Radlauer, A. K. Buckley, 14 The activity of the current systems falls in the same range as those of
L. M. Henling and T. Agapie, J. Am. Chem. Soc., 2013, 135, 3784.
I. Bratko and M. G o´ mez, Dalton Trans., 2013, 42, 10664.
(a) O. Dechy-Cabaret, B. Martin-Vaca and D. Bourissou, Chem. Rev.,
the related {phenoxy-imine}aluminum catalysts: (a) N. Iwasa,
M. Fujiki and K. Nomura, J. Mol. Catal. A: Chem., 2008, 292, 67;
(b) D. Papparlardo, L. Annunziata and C. Pellecchia, Macromolecules,
2009, 42, 6056; (c) W. Zhang, Y. Wang, W.-H. Sun, L. Wang and
C. Redshaw, Dalton Trans., 2012, 41, 11587.
2
3
2
004, 104, 6147; (b) C. M. Thomas, Chem. Soc. Rev., 2010, 39, 165;
(
(
c) M. J. Stanford and A. P. Dove, Chem. Soc. Rev., 2010, 39, 486;
d) N. Ajellal, J.-F. Carpentier, C. Guillaume, S. M. Guillaume, 15 (a) K. Ding, M. O. Miranda, B. Moscato-Goodpaster, N. Ajellal,
M. H ´e lou, V. Poirier, Y. Sarazin and A. Trifonov, Dalton Trans.,
L. E. Breyfogle, E. D. Hermes, C. P. Schaller, S. E. Roe, C. J. Cramer,
M. A. Hillmyer and W. B. Tolman, Macromolecules, 2012, 45, 5387;
(b) Y. Huang, W. Wang, C. C. Lin, M. P. Blake, L. Clark, A. D. Schwarz
and P. Mountford, Dalton Trans., 2013, 42, 9313.
2
2
010, 39, 8363; (e) P. J. Dijkstra, H. Du and J. Feijen, Polym. Chem.,
011, 2, 520.
4
5
For the use of Cl- and RO-bridged dinuclear In compounds in ROP
of cyclic esters, see: (a) C. Xu, I. Yu and P. Mehrkhodavandi, Chem. 16 Similar kinetic experiments performed using higher concentration
Commun., 2012, 48, 6806, and references cited therein; (b) I. Yu,
A. Acosta-Ramirez and P. Mehrkhodavandi, J. Am. Chem. Soc., 2012,
of II–Al
2
(1000 : 4 : 10) afforded nearly the same activation para-
a a
ꢀ1
ꢀ1
ꢀ1
meters: DH = 14.8(1) kcal mol , DS = ꢀ29(5) cal mol
K
a
ꢀ1
1
34, 12758, and references cited therein.
and DG298 = 23.2(1) kcal mol
.
(a) C. K. Williams, N. R. Brooks, M. A. Hillmeyer and W. B. Tolman, 17 The P
r
values for PLA samples, obtained with both dinuclear and
Chem. Commun., 2002, 2132; (b) P. D. Knight, A. J. P. White and
C. K. Williams, Inorg. Chem., 2008, 47, 11711.
S. Sun, K. Nie, Y. Tan, B. Zhao, Y. Zhang, Q. Shen and Y. Yao, Dalton
Trans., 2013, 42, 2870.
mononuclear precursors, were all found in the range 0.5–0.6.
18 In dizirconium and dinickel systems which exhibited pronounced
cooperative effects in a-olefin copolymerization reactions (ref. 1),
such inter-metallic distances were reported in the range 6.0–8.6 Å
and 3.1–8.6 Å, respectively. In dizinc complexes (ref. 5), such
distances are 3.1–3.3 Å. Higher ROP activities were found
for dialuminium complexes with Al–Al distances in the range
5.8–6.6 Å, while closer Al–Al distance (3.2 Å) was found to be
detrimental for activity of a dinuclear compound (ref. 9a).
6
7
T. K. Saha, V. Ramkumar and D. Chakraborty, Inorg. Chem., 2011,
5
0, 2720.
8
9
S. I. Vagin and B. Rieger, Z. Naturforsch., 2012, 67b, 614.
(a) A. Arbaoui, C. Redshaw and D. L. Huges, Chem. Commun., 2008, 4717;
(b) M. H. Thibault and F.-G. Fontaine, Dalton Trans., 2010, 39, 5688;
1
1694 Chem. Commun., 2013, 49, 11692--11694
This journal is c The Royal Society of Chemistry 2013