10886
ANOZ-CARBONELL Et AL.
|
18. Herguedas B, Lans I, Sebastián M, Hermoso JA, Martínez-Júlvez
M, Medina M. Structural insights into the synthesis of FMN in
prokaryotic organisms. Acta Crystallogr D Biol Crystallogr.
2015;71:2526-2542.
19. Sebastián M, Velázquez-Campoy A, Medina M. The RFK cata-
lytic cycle of the pathogen Streptococcus pneumoniae shows spe-
cies-specific features in prokaryotic FMN synthesis. J Enzyme
Inhib Med Chem. 2018;33:842-849.
20. Sebastián M, Serrano A, Velázquez-Campoy A, Medina M.
Kinetics and thermodynamics of the protein-ligand interactions
in the riboflavin kinase activity of the FAD synthetase from
Corynebacterium ammoniagenes. Sci Rep. 2017;7:7281.
21. Walsh CT, Wencewicz TA. Flavoenzymes: versatile catalysts in
biosynthetic pathways. Nat Prod Rep. 2013;30:175-200.
22. Sebastián M, Lira-Navarrete E, Serrano A, et al. The FAD syn-
thetase from the human pathogen Streptococcus pneumoniae: a
bifunctional enzyme exhibiting activity-dependent redox require-
ments. Sci Rep. 2017;7:7609.
23. Matern A, Pedrolli D, Großhennig S, Johansson J, Mack M. Uptake
and metabolism of antibiotics roseoflavin and 8-demethyl-8-ami-
noriboflavin in riboflavin-auxotrophic Listeria monocytogenes.
J Bacteriol. 2016;198:3233-3243.
24. Marcuello C, Arilla-Luna S, Medina M, Lostao A. Detection of a
quaternary organization into dimer of trimers of Corynebacterium
ammoniagenes FAD synthetase at the single-molecule level and at
the in cell level. Biochim Biophys Acta. 2013;1834:665-676.
25. Lans I, Seco J, Serrano A, et al. The dimer-of-trimers assembly pre-
vents catalysis at the transferase site of prokaryotic FAD synthase.
Biophys J. 2018;115:988-995.
26. Solovieva IM, Tarasov KV, Perumov DA. Main physicochemical
features of monofunctional flavokinase from Bacillus subtilis.
Biochemistry (Mosc). 2003;68:177-181.
27. Sebastián M, Arilla-Luna S, Bellalou J, Yruela I, Medina M. The
biosynthesis of flavin cofactors in Listeria monocytogenes. J Mol
Biol. 2019;431:2762-2776.
28. Barile M, Giancaspero TA, Leone P, Galluccio M, Indiveri C.
Riboflavin transport and metabolism in humans. J Inherit Metab
Dis. 2016;39:545-557.
of cooperative ligand binding by isothermal titration calorimetry.
Biophys J. 2006;91:1887-1904.
36. Vega S, Abian O, Velazquez-Campoy A. A unified framework
based on the binding polynomial for characterizing biological sys-
tems by isothermal titration calorimetry. Methods. 2015;76:99-115.
37. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH.
PROPKA3: consistent treatment of internal and surface residues in
empirical pKa predictions. J Chem Theory Comput. 2011;7:525-537.
38. Delano WL. PyMOL: an open-source molecular graphics tool.
CCP4 Newsletter Pro Crys. 2002;40:82-92.
39. Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High perfor-
mance molecular simulations through multi-level parallelism from
laptops to supercomputers. SoftwareX. 2015;1-2:19-25.
40. Duan Y, Wu C, Chowdhury S, et al. A point-charge force field
for molecular mechanics simulations of proteins based on con-
densed-phase quantum mechanical calculations. J Comput Chem.
2003;24:1999-2012.
41. Humphrey W, Dalke A, Schulten K. VMD: visual molecular
dynamics. J Mol Graph. 1996;14:33-38, 27-38.
42. Lee SS, McCormick DB. Effect of riboflavin status on hepatic activities
of flavin-metabolizing enzymes in rats. J Nutr. 1983;113:2274-2279.
43. Pedrolli DB, Nakanishi S, Barile M, et al. The antibiotics roseo-
flavin and 8-demethyl-8-amino-riboflavin from Streptomyces
davawensis are metabolized by human flavokinase and human
FAD synthetase. Biochem Pharmacol. 2011;82:1853-1859.
44. Jin C, Yao Y, Yonezawa A, et al. Riboflavin transporters RFVT/
SLC52A mediate translocation of riboflavin, rather than FMN or
FAD, across plasma membrane. Biol Pharm Bull. 2017;40:1990-1995.
45. Bollen YJ, Westphal AH, Lindhoud S, van Berkel WJ, van Mierlo
CP. Distant residues mediate picomolar binding affinity of a pro-
tein cofactor. Nat Commun. 2012;3:1010.
46. Martínez-JúlvezM,MedinaM,Velázquez-CampoyA.Bindingther-
modynamics of ferredoxin:NADP+ reductase: two different pro-
tein substrates and one energetics. Biophys J. 2009;96:4966-4975.
47. Yamada Y, Merrill AH Jr, McCormick DB. Probable reaction
mechanisms of flavokinase and FAD synthetase from rat liver.
Arch Biochem Biophys. 1990;278:125-130.
48. Torchetti EM, Bonomi F, Galluccio M, et al. Human FAD synthase
(isoform 2): a component of the machinery that delivers FAD to
apo-flavoproteins. FEBS J. 2011;278:4434-4449.
49. Sebastián M, Anoz-Carbonell E, Gracia B, et al. Discovery of an-
timicrobial compounds targeting bacterial type FAD synthetases.
J Enzyme Inhib Med Chem. 2018;33:241-254.
50. Serrano A, Ferreira P, Martínez-Júlvez M, Medina M. The pro-
karyotic FAD synthetase family: a potential drug target. Curr
Pharm Des. 2013;19:2637-2648.
29. Giancaspero TA, Colella M, Brizio C, et al. Remaining challenges
in cellular flavin cofactor homeostasis and flavoprotein biogenesis.
Front Chem. 2015;3:30.
30. Serrano A, Sebastián M, Arilla-Luna S, et al. The trimer inter-
face in the quaternary structure of the bifunctional prokaryotic
FAD synthetase from Corynebacterium ammoniagenes. Sci Rep.
2017;7:404.
31. Serrano A, Frago S, Herguedas B, Martinez-Julvez M, Velazquez-
Campoy A, Medina M. Key residues at the riboflavin kinase
catalytic site of the bifunctional riboflavin kinase/FMN adenylyl-
transferase from Corynebacterium ammoniagenes. Cell Biochem
Biophys. 2013;65:57-68.
32. Vogt AD, Di Cera E. Conformational selection or induced fit?
A critical appraisal of the kinetic mechanism. Biochemistry.
2012;51:5894-5902.
SUPPORTING INFORMATION
Additional Supporting Information may be found online in
the Supporting Information section.
33. Frago S, Velázquez-Campoy A, Medina M. The puzzle of ligand
binding to Corynebacterium ammoniagenes FAD synthetase. J
Biol Chem. 2009;284:6610-6619.
34. Martinez-Julvez M, Abian O, Vega S, Medina M, Velazquez-
Campoy A. Studying the allosteric energy cycle by isothermal ti-
tration calorimetry. Methods Mol Biol. 2012;796:53-70.
35. Velázquez-Campoy A, Goñi G, Peregrina JR, Medina M. Exact
analysis of heterotropic interactions in proteins: Characterization
How to cite this article: Anoz-Carbonell E, Rivero
M, Polo V, Velázquez-Campoy A, Medina M. Human
riboflavin kinase: Species-specific traits in the