Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
emission decay profiles of the Fc-COO⁻ doped NU-902(H2) and
2012, 41, 4808-4826.
DOI: 10.1039/C6CC07343C
NU-902(Zn) samples (Fig. 5) also correlate that a better exciton
migration efficiency in NU-902(H2), possibly due to a stronger
oscillator strength of the Q band and a better overlap between
the absorption and emission spectra compared to the
metallated MOFs (Fig. SI-14).
5. (a) P. D. Frischmann, K. Mahata and F. Würthner, Chem. Soc. Rev.,
2013, 42, 1847-1870; (b) X. Li , L. E. Sinks, B. Rybtchinski and M.
R. Wasielewski, J. Am. Chem. Soc., 2004, 126, 10810-10811; (c) R.
F. Kelley, S. J. Lee, T. M. Wilson, Y. Nakamura, D. M. Tiede, A.
Osuka, J. T. Hupp and M. R. Wasielewski, J. Am. Chem. Soc., 2008,
130, 4277-4284.
6. M. R. Wasielewski, Acc. Chem. Res., 2009, 42, 1910-1921.
7. (a) G. Ferey, Chem. Soc. Rev., 2008, 37, 191-214; (b) S. Horike, S.
Shimomura and S. Kitagawa, Nat. Chem., 2009, 1, 695-704; (c) O.
M. Yaghi, M. O'Keefe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and
J. Kim, Nature, 2003, 423, 705–714.
8. (a) C. Wang and W. Lin, J. Am. Chem. Soc., 2011, 133, 4232-4235;
(b) J.-L. Wang, C. Wang and W. Lin, ACS Catalysis, 2012, 2, 2630-
2640; (c) C. A. Kent, D. Liu, L. Ma, J. M. Papanikolas, T. J. Meyer
and W. Lin, J. Am. Chem. Soc., 2011, 133, 12940-12943; (d) C. A.
Kent, B. P. Mehl, L. Ma, J. M. Papanikolas, T. J. Meyer and W. Lin,
J. Am. Chem. Soc., 2010, 132, 12767-12769; (e) M. So, S. Jin, H.-J.
Son, G. P. Wiederrecht, O. K. Farha and J. T. Hupp, J. Am. Chem.
Soc., 2013, 135, 15698-15701; (f) H.-J. Son, S. Jin, S. Patwardhan,
S. J. Wezenberg, N. C. Jeong, M. So, C. E. Wilmer, A. A. Sarjeant,
G. C. Schatz, R. Q. Snurr, O. K. Farha, G. P. Wiederrecht and J. T.
Hupp, J. Am. Chem. Soc., 2013, 135, 862-869.
9. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keefe
and O. M. Yaghi, Science, 2002, 295, 469-472.
10. R. R. Lunt, J. B. Benziger and S. R. Forrest, Adv. Mater., 2010, 22,
1233-1236.
11. (a) I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha and
J. T. Hupp, ACS Catalysis, 2015, 5, 6302-6309; (b) D. Feng, Z.-Y.
Gu, J.-R. Li, H.-L. Jiang, Z. Wei and H.-C. Zhou, Angew. Chem. Int.
Ed., 2012, 51, 10307-10310.
12. N. J. Turro, Modern Molecular Photochemistry, University Science
Books, Sausalito, CA, 1978.
Fig. 5. Transient emission decay profile for (a) free-base and (b) zinc(II) metallated
MOFs NU-902 at various Fc/por doping ratio.
In summary, with the help of computational and
experimental data, we found that the singlet state emissive
spectral features of MOFs are inherently different and a
function of their underlying framework topology. In these solid-
state samples, framework topology dictates the inter-
chromophoric orientation and interactions. Stronger
interchromophoric interaction leads to more red shifted spectra
(smaller S₁-S₀ energy gap) with faster emissive state radiative
decay. Ability to modulate the corresponding emissive state
lifetimes in LH model systems should enable to control the
number of exciton hopping and effective exciton displacement.
Even with identical building blocks, chromophore ring planarity
may vary due to the network symmetry imposed by the
underlying frameworks to manifest modified emission spectra.
Furthermore, for a given topological network, framework
consisting of less symmetric linker manifests more exciton
hopping. The findings reported here thus underscore that
topological control over the photophysical properties of MOFs
can play a critical role in processes relevant for light harvesting
utility.
13. (a) I. Hod, O. K. Farha and J. T. Hupp, Chem. Commun., 2016,
1705-1708; (b) P. Deria, W. Bury, I. Hod, C.-W. Kung, O.
Karagiaridi, J. T. Hupp and O. K. Farha, Inorg. Chem., 2015, 54,
2185-2192; (c) P. Deria, W. Bury, J. T. Hupp and O. K. Farha, Chem.
Commun., 2014, 50, 1965-1968; (d) P. Deria, J. E. Mondloch, E.
Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp and O. K.
Farha, J. Am. Chem. Soc., 2013, 135, 16801-16804.
We gratefully acknowledge the support from SIU Carbondale
start-up funds and the State of Illinois. PD acknowledges the
Ralph E Powe Jr. Faculty Enhancement Award, Oak Ridge
Associate University, and SNW acknowledges NSF-REU
fellowship. We acknowledge Prof. Qingfeng Ge, SIUC for
providing access to the computational facility.
Notes and references
1. (a) G. D. Scholes, G. R. Fleming, A. Olaya-Castro and R. van
Grondelle, Nat. Chem., 2011, 3, 763-774; (b) J. Barber and B.
Andersson, Nature, 1994, 370, 31-34.
2. (a) W. Kühlbrandt, D. N. Wang and Y. Fujiyoshi, Nature, 1994,
367, 614-621; (b) G. Mcdermott, S. M. Prince, A. A. Freer, A. M.
Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell and N. W.
Isaacs, Nature, 1994, 374, 517-521.
3. (a) S. E. Webber, Chem. Rev., 1990, 90, 1469-1482; (b) M. Sykora,
K. A. Maxwell, J. M. DeSimone and T. J. Meyer, Proc. Natl. Acad.
Sci. U.S.A., 2000, 97, 7687-7691.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins