Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC02570J
COMMUNICATION
Journal Name
Notes and references
1
(a) J. Clardy and C. Walsh, Nature, 2004, 432, 829. (b) B.
Meunier, S. P. de Visser and S. Shaik, Chem. Rev., 2004, 104
3947. (c) L. Que, Jr. and W. B. Tolman, Nature, 2008, 455
333.
,
,
2
3
(a) B. A. Arndtsen, R. G. Bergman, T. A. Mobley and T. H.
Peterson, Acc. Chem. Res., 1995, 28, 154. (b) T. Newhouse
and P. S. Baran, Angew. Chem. Int. Ed., 2011, 50, 3362.
(a) K. Zhang, B. M. Shafer, M. D. Demarsil, H. A. Stern and R.
Fasan, J. Am. Chem. Soc., 2012, 134, 18695. (b) J. Genovino,
S. Lütz, D. Sames and B. B. Touré, J. Am. Chem. Soc., 2013,
135, 12346.
4
5
6
(a) B. F. Abrahams, B. F. Hoskins and R. Robson, J. Am. Chem.
Soc., 1991, 113, 3606. (b) O. M. Yaghi, G. Li and H. Li, Nature,
1995, 378, 703. (c) H. Li, M. Eddaoudi, M. O’Keefe and O. M.
Yaghi, Nature, 1999, 402, 276.
(a) K. S. Suslick, P. Bhyrappa, J. H. Chou, M. E. Kosal, S.
Nakagaki, D. W. Smithenry and S. R. Wilson, Acc. Chem. Res.,
2005, 38, 283. (b) W.-Y. Gao, M. Chrzanowski and S. Ma,
Chem. Soc. Rev., 2014, 43, 5841.
Figure 4. Oxidation of cis-decalin affords a catalyst-
dependent mixture of cis- and trans-1.
(a) M. E. Kosal, J.-H. Chou, S. R. Wilson and K. S. Suslick, Nat.
Mater., 2002, 1, 118. (b) A. M. Shultz, O. K. Farha, J. T. Hupp
size, it has no impact on material porosity (Table S3). A similar
trend is observed when Fe(bpy) is used as an oxidation
catalyst. As synthesized samples afford a 53:1 mixture of cis-
and S. T. Nguyen, J. Am. Chem. Soc., 2009, 131, 4204. (c) O.
K. Farha, A. M. Shutlz, A. A. Sarjeant, S. T. Nguyen and J. T.
Hupp, J. Am. Chem. Soc., 2011, 133, 5652. (d) X.-L. Lv, K.
Wang, B. Wang, J. Su, X. Zou, Y. Xie, J.-R. Li and H.-C. Zhou, J.
Am. Chem. Soc., 2017, 139, 211.
(a) E. Y. Choi, P. M. Barron, R. W. Novotny, C. H. Hu, Y. U.
Kwon and W. Y. Choe, CrystEngComm, 2008, 10, 824. (b) E.-
Y. Choi, P. M. Barron, R. W. Novotny, H.T. Son, C. Hu and W.
Choe, Inorg. Chem., 2009, 48, 426. (c) E. Y. Choi, C. A. Wray,
C. H. Hu and W. Choe, CrystEngComm, 2009, 11, 535. (d) P.
M. Barron, C. A. Wray, C. Hu, Z. Guo and W. Choe, Inorg.
Chem., 2010, 49, 10217.
and trans-1 while ground samples afford a 37:1 ratio (Entries 4
and 5).
7
The collected data is consistent with rapid hydroxylation of
radical intermediates inside our porous materials. Relatively
slow hydroxylation of radical intermediates by surface-bound
catalysts provides opportunity for loss of stereospecificity
during oxidation. These observations suggest that our porous
materials effectively function as tight solvent cages and
prevent stereochemical scrambling during hydroxylation
chemistry. Further, the observed relationship between the
outer surface area of catalyst particles and reaction
8
9
B. F. Abrahams, B. F. Hoskins, D. M. Michail and R. Robson,
Nature, 1994, 369, 727.
(a) C. Serre, F. Millange, C. Thouvenot, M. Noguès, G.
Marsolier, D. Louër and G. Ferey, J. Am. Chem. Soc., 2002,
124, 13519. (b) S. Kitagawa, R. Kitaura and S.-I. Noro, Angew.
Chem. Int. Ed., 2004, 43, 2334. (c) H. Sato, W. Kosaka, R.
Matsuda, A. Hori, Y. Hijikata, R. V. Belosludov, S. Sakaki, M.
Takata and S. Kitagawa, Science, 2014, 343, 167. (d) J. A.
Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez,
J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C.
M. Brown, P. L. Llewellyn, N. Masciocchi and J. R. Long,
Nature, 2015, 527, 357.
stereospecificity provides
a useful tool to differentiate
catalysis in from catalysis on these porous materials.
In summary, we have prepared a new isoreticular family of
layered porphyrinic materials with substrate-accessible
unsaturated Fe porphyrin sites. We have shown that these
materials affect highly stereospecific oxidation of cis-decalin
while hydroxylation with homogeneous and non-porous
analogs proceeds with low stereospecificity. Oxidation
stereospecificity provides a chemical probe for differentiating
catalysis in versus catalysis on these porous materials.
Accomplishing catalysis in materials is a critical prerequisite to
utilizing pore structure to control chemical selectivity. We
anticipate that use of cis-decalin oxidation specifically, and
other stereochemical probes generally, may provide useful
tools for evaluating the locus of catalysis with porous
materials.
10 P. M. Barron, H.-T. Son, C. Hu and W. Choe, Cryst. Growth
Des., 2009, , 1960.
11 (a) B. J. Burnett, P. M. Barron, C. Hu and W. Choe, J. Am.
Chem. Soc., 2011, 133, 9984. (b) S. Takaishi, E. J. DeMarco,
M. J. Pellin, O. K. Farha and J. T. Hupp, Chem. Sci., 2013,
1509.
12 L. J. Barbour, Chem. Commun. 2006, 1163.
13 L. Ma, J. M. Falkowski, C. Abney and W. Lin, Nat. Chem.,
2010, , 838.
14 (a) P. D. Bartlett, R. E. Pincock, J. H. Rolston, W. G. Schindel
and L. A. Singer, J. Am. Chem. Soc., 1965, 87, 2590. (b) M.
Zhou, D. Balcells, A. R. Parent, R. H. Crabtree and O.
Eisenstein, ACS Catal. 2012, 2, 208–218.
15 J. T. Groves and T. E. Nemo, J. Am. Chem. Soc., 1983, 105
9
4,
2
We thank Texas A&M and the Welch Foundation (A-1907)
for financial support, John Gladysz for use of
a gas
,
chromatograph, and Yu-Sheng Chen and Wenqian Xu for
assistance with SCXRD and in situ PXRD, carried out at Sectors
15 (NSF/CHE-1346572) and 17 of the APS. Use of the APS, an
Office of Science User Facility operated for the U.S.
Department of Energy (DOE) Office of Science by Argonne
National Laboratory, was supported by the U.S. DOE under
Contract No. DE-AC02-06CH11357.
6243.
16 D. Macikenas, E. Skrzypczak-Jankun and J. D. Protasiewicz, J.
Am. Chem. Soc., 1999, 121, 7164.
17 (a) K. S. Suslick, P. Bhyrappa, J.-H. Chou, M. E. Kosal, S.
Nakagaki, D. W. Smithenry and S. R. Wilson, Acc. Chem. Res.
2005, 38, 283. (b) C. Zou, T. Zhang, M.-H. Xie, L. Yan, G.-Q.
Kong, X.-L. Yang, A. Ma and C.-D. Wu, Inorg. Chem. 2013, 52
3620.
,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins