Photochromism of Acetyl-Cyclophanochromene
409–418; g) Z. Y. Jiang, Q. Kuang, Z. X. Xie, L. S. Zheng, Adv.
Funct. Mater. 2010, 20, 3634–3645; h) L. R. Dalton, P. A. Sulli-
van, D. H. Bale, Chem. Rev. 2010, 110, 25–55; i) S. J. Benight,
D. B. Knorr Jr., L. E. Johnson, P. A. Sullivan, D. Lao, J. Sun,
L. S. Kocherlakota, A. Elangovan, B. H. Robinson, R. M. Ov-
erney, L. R. Dalton, Adv. Mater. 2012, 24, 3263–3268.
a) R. W. Wagner, J. S. Lindsey, J. Seth, V. Palaniappan, D. F.
Bocian, J. Am. Chem. Soc. 1996, 118, 3996–3997; b) M. Irie
(Ed.), Special Issue: Photochromism: Memories and Switches,
Chem. Rev. 2000, 100, 1683–1684; c) M. Irie, Chem. Rev. 2000,
100, 1685–1716; d) D. J. Weix, S. D. Dreher, T. J. Katz, J. Am.
Chem. Soc. 2000, 122, 10027–10032; e) G. Chen, J. Seo, C.
Yang, P. N. Prasad, Chem. Soc. Rev. 2013, 42, 8304–8338; f) S.
Saxena, C. E. Hansen, L. A. Lyon, Acc. Chem. Res. 2014, 47,
2426–2434.
a) R. C. Bertelson, Photochromism (Ed.: G. H. Brown), Wiley,
New York, 1971, ch. 10, and references cited therein; b) H.
Durr, H. Bouas-Laurent (Eds.), Photochromism: Molecules and
Systems, Elsevier, Amsterdam, 1990; c) J. C. Crano, R. J. Gug-
lielmetti (Eds.), Organic Photochromic and Thermochromic
Compounds, Plenum Press, New York, 1999, vol. 1 and 2.
a) J. C. Crano, T. Flood, D. Knowles, A. Kumar, B. V. Gemert,
Pure Appl. Chem. 1996, 68, 1395–1398; b) A. Peters, C. Vitols,
R. McDonald, N. R. Branda, Org. Lett. 2003, 5, 1183–1186; c)
F. M. Raymo, M. Tomasulo, Chem. Eur. J. 2006, 12, 3186–
3193; d) M. I. Zakharova, C. Coudret, V. Pimienta, J. C.
Micheau, S. Delbaere, G. Vermeersch, A. V. Metelitsa, N. Volo-
shin, V. I. Minkin, Photochem. Photobiol. Sci. 2010, 9, 199–
207; e) A. Perrier, F. Maurel, D. Jacquemin, J. Phys. Chem. C
2011, 115, 9193–9203; f) C. Bertarelli, A. Biancoc, R. Castag-
naa, G. Pariania, J. Photochem. Photobiol. C: Photochem. Rev.
2011, 12, 106–125; g) F. K. Bruder, R. Hagen, T. Rolle, M. S.
Weiser, T. Facke, Angew. Chem. Int. Ed. 2011, 50, 4552–4573;
Angew. Chem. 2011, 123, 4646–4668; h) M. L. Bossi, P. F. Ara-
mendía, J. Photochem. Photobiol. C: Photochem. Rev. 2011, 12,
154–166; i) J. Conyard, K. Addison, I. A. Heisler, A. Cnossen,
W. R. Browne, B. L. Feringa, S. R. Meech, Nature Chem. 2012,
4, 547–551.
a) P. N. Day, Z. Wang, R. Pachter, J. Phys. Chem. 1995, 99,
9730–9738; b) S. Delbaere, B. L. Houze, C. Bochu, Y. Teral,
M. Campredon, G. Vermeersch, J. Chem. Soc. Perkin Trans. 2
1998, 1153–1157; c) Y. Kodama, T. Nakabayashi, K. Segawa,
E. Hattori, M. Sakuragi, N. Nishi, H. Sakuragi, J. Phys. Chem.
A 2000, 104, 11478–11485; d) P. J. Coelho, L. M. Carvalho, S.
Abrantes, M. M. Oliveira, A. M. F. Oliveira-Campos, A. Sa-
mat, R. Guglielmetti, Tetrahedron 2002, 58, 9505–9511; e) J.
Hobley, V. Malatesta, K. Hatanaka, S. Kajimoto, S. L. Wil-
liams, H. Fukumura, Phys. Chem. Chem. Phys. 2002, 4, 180–
184; f) S. Delbaere, J. C. Micheau, G. Vermeersch, J. Org.
Chem. 2003, 68, 8968–8973; g) P. L. Gentili, E. Danilov, F. Ort-
ica, M. A. J. Rodgers, G. Favaro, Photochem. Photobiol. Sci.
2004, 3, 886–891; h) S. Delbaere, J. C. Micheau, M. Frigoli,
G. H. Mehl, G. Vermeersch, J. Phys. Org. Chem. 2007, 20, 929–
935; i) B. Moine, G. Buntinx, O. Poizat, J. Rehault, C. Mous-
trou, A. Samat, J. Phys. Org. Chem. 2007, 20, 936–943; j) D.
Jacquemin, E. A. Perpete, F. Maurel, A. Perrier, Phys. Chem.
Chem. Phys. 2010, 12, 13144–13152; k) C. M. Sousa, J. Pina,
J. S. de Melo, J. Berthet, S. Delbaere, P. J. Coelho, Org. Lett.
2011, 13, 4040–4043.
2-yn-1-ol (0.32 g, 1.50 mmol), and a catalytic amount of PPTS
(5 mol-%) were added to dry DCE (10 mL). The mixture was
heated at reflux under a nitrogen gas atmosphere for 24 h. After
this period, the contents were cooled and washed, and the organic
matter was extracted with chloroform (3ϫ 20 mL). The combined
organic extract was dried with anhydrous Na2SO4 and concen-
trated under reduced pressure. After removal of the solvent, the
crude mixture was subjected to silica gel column chromatography
(4% ethyl acetate in petroleum ether) to obtain pure Ac-CPC, yield
60%. Colorless solid, m.p. 115–117 °C. 1H NMR (500 MHz,
CDCl3): δ = 7.54 (d, J = 7.2 Hz, 2 H), 7.40 (t, J = 7.5 Hz, 2 H),
7.21–7.26 (m, 3 H), 6.96–7.09 (m, 4 H), 6.72 (d, J = 7.8 Hz, 1 H),
6.67 (d, J = 9.5 Hz, 1 H), 6.57 (d, J = 7.5 Hz, 1 H), 6.42 (d, J =
9.5 Hz, 1 H), 6.38 (d, J = 7.7 Hz, 1 H), 6.11 (d, J = 7.7 Hz, 1 H),
4.46–4.50 (m, 1 H), 3.63–3.69 (m, 1 H), 3.36–3.40 (m, 1 H), 3.20
(t, J = 12.3 Hz, 1 H), 2.85–2.92 (m, 2 H), 2.69–2.77 (m, 2 H),
2.10 ppm (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 27.1, 28.1,
31.7, 33.8, 34.8, 80.4, 122.8, 122.9, 124.9, 125.7, 126.1, 126.5, 126.8,
127.4, 127.5, 127.9, 128.1, 128.8, 132.8, 134.0, 135.5, 135.9, 136.0,
[2]
[3]
[4]
137.5, 142.6, 144.3, 144.5, 151.2, 198.6 ppm. IR (KBr): ν = 3027,
˜
2856, 1662, 1580, 1550, 1491, 1453 cm–1. MS (ESI+): calcd. for
C33H28O2 [M + H] 457.2168; found 457.2162.
X-ray Single-Crystal Structure Determination of Ac-CPC: The X-
ray diffraction intensity data for crystals of Ac-CPC were collected
at 100 K with a Bruker SMART APEX CCD detector system hav-
ing a Mo-sealed Siemens ceramic diffraction tube (λ = 0.7107 Å)
and a highly oriented graphite monochromator operating at 50 kV
and 30 mA. The data collection was done in a hemisphere mode
and was analyzed with Bruker’s SAINTPLUS. The structure was
determined by direct methods by using the SHELXL package, and
refinement was done by full-matrix least-squares method based on
F2 by using the SHELX-97 program. The hydrogen atoms were
largely located from difference Fourier map, and those that could
not be identified were fixed geometrically. Hydrogen atoms were
refined isotropically and were treated as riding on their non-
hydrogen atoms, whereas all non-hydrogen atoms were subjected to
anisotropic refinement. Refinement details and other data are given
in the Supporting Information.
[5]
CCDC-1040065 (for Ac-CPC) contains the supplementary crystal-
lographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
Supporting Information (see footnote on the first page of this arti-
cle): Crystal data and copies of the 1H NMR and 13C NMR spectra
of all the compounds.
Acknowledgments
S. M. and J. N. M. thankfully acknowledge financial support from
the Rajiv Gandhi University of Knowledge and Technology-IIIT-
Nuzvid and the Council of Scientific and Industrial Research
(CSIR), New Delhi, respectively. A. M. is grateful to CSIR for a
research fellowship. The authors thank Mr. Amrit Kumar for his
help during preliminary investigations.
[6]
a) J. N. Moorthy, P. Venkatakrishnan, S. Samanta, D. K. Ku-
mar, Org. Lett. 2007, 9, 919–922; b) J. N. Moorthy, P. Venka-
takrishnan, S. Samanta, Org. Biomol. Chem. 2007, 5, 1354–
1357; c) J. N. Moorthy, A. L. Koner, S. Samanta, A. Roy, W. M.
Nau, Chem. Eur. J. 2009, 15, 4289–4300.
J. N. Moorthy, P. Venkatakrishnan, S. Sengupta, M. Baidya,
Org. Lett. 2006, 8, 4891–4894.
S. Mandal, K. N. Parida, S. Samanta, J. N. Moorthy, J. Org.
Chem. 2011, 76, 7406–7414.
J. N. Moorthy, S. Mandal, A. Mukhopadhayay, S. Samanta, J.
Am. Chem. Soc. 2013, 135, 6872–6884.
[1] a) M. Takeshita, N. Kato, S. Kawauchi, T. Imase, J. Watanabe,
M. Irie, J. Org. Chem. 1998, 63, 9306–9313; b) J. M. Tour, J.
Org. Chem. 2007, 72, 7477–7496; c) P. K. Vemula, G. John, Acc.
Chem. Res. 2008, 41, 769–782; d) L. Zang, Y. Che, J. S. Moore,
Acc. Chem. Res. 2008, 41, 1596–1608; e) W. T. Yao, S. H. Yu,
Adv. Funct. Mater. 2008, 18, 3357–3366; f) Y. S. Zhao, H. Fu,
A. Peng, Y. Ma, Q. Liao, J. Yao, Acc. Chem. Res. 2010, 43,
[7]
[8]
[9]
Eur. J. Org. Chem. 2015, 1403–1408
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1407