10.1002/chem.202100430
Chemistry - A European Journal
FULL PAPER
an excellent catalytic effect on epoxy compounds with longer
carbon chains. Better than most catalysts reported in the
literature. After PCN-224-ZnCo1 was pyrolyzed, it showed well-
dispersed Co2O3 nanoclusters in the N-doped porous carbon
matrix. The mechanism of the heterogeneous catalyst to
catalyze the cycloaddition of CO2 in an N-doped carbon matrix
can be attributed to the synergistic effects of basic sites derived
from the activated N compounds (N-doped carbon matrix) with
Co sites (Co2O3 nanoclusters).Firstly the acidic sites coordinate
with the O of the epoxide and activate the epoxy compound. At
the same time, the basic N-containing active sites are easy to
capture and adsorb CO2, and its lone pair of electrons attack the
carbonyl group of CO2 to make CO2 activated. Then activated
CO2 reacts with activated epoxy compound to generate
[14] W. B, Xu, Q. Y. Ding, P. P. Sang, J. Xu, Z. M. Shi, L. M. Zhao, Y. H. Chi,
W. Y. Guo, J. Phys. Chem. C 2015, 119, 21943−21951.
[15] D. Suttipat, W. Wannapakdee, T. Yutthalekha, S. Ittisanronnachai, T.
Ungpittagul, K. Phomphrai, S. Bureekaew, C. Wattanakit, ACS Appl.
Mater. Interfaces. 2018, 10, 16358−16366.
[16] D. W. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. W. Wei, H. C. Zhou, Angew.
Chem. Int. Ed. 2012, 51, 10307 –10310.
[17] Q. M. Kainz, O. REISER, Acc. Chem. Res. 2014, 47, 667–677.
2019, 44, 26444–26458.
[19] M. Enterría, J. L. Figueiredo, Carbon, 2016, 108, 79–102.
[20] Q. Lin, X. Bu, A. Kong, C. Mao, F. Bu, P. Feng, Adv. Mater. 2015, 27,
3431–3436.
[21] L. Qi, B. Xian, A. Kong. M. Cheng, M.; F. Bu, P. Feng, J. Am. Chem. Soc.
2015, 137, 2235−2238.
corresponding cyclic carbonate. These results provide
a
reasonable strategy for the adjustment of acidic/basic sites in
porous metal-nitrogen-carbon materials. The catalyst of this
structure has broad application prospects in catalyzing the
cycloaddition reaction of carbon dioxide.
[22] L. Qi, X. Bu, A. Kong, M. Cheng, F. Bu, P. Feng. J. Phys. Chem. B. 2000,
104, 3624–3629.
943-951.
[24] J. H. Wang, Y. Fan, Y. H. Tan, X. Zhao, Y. Zhang, C. M. Cheng, M. Yang,
ACS Appl. Mater. Interfaces. 2018, 10, 36615–36621.
[25] H. Q. Xu, K. C. Wang, M. L. Ding, D. W. Feng, H. L. Jiang, H. C. Zhou, J.
Am. Chem. Soc. 2016, 138, 5316−5320.
[26] D. Feng, W. C. Chung, Z. Wei, Z. Y. Gu, H. L. Jiang, Y. P. Chen, D. J.
Dare-nsbourg, H. C. Zhou, J. Am. Chem. Soc. 2013, 135, 17105–17110.
[27] Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Ali-
Acknowledgemengts
The authors would like to give thanks for the financial support
from the National Natural Science Foundation of China (No.
21576074). The authors are also grateful for the financial
support of Hunan University.
[28] M. Alves, B. Grignard, R. Mereau, C. Jerome, T. Tassaing, C.
Detrembleur, Catal. Sci. Technol. 2017, 7, 2651.
[29] S. Carrasco, A. Sanz-Marco, B. Mart ín-Matute, Organometallics. 2019,
38, 3429−3435.
[30] E. Liu, J. P. Zhu, W. J. Yang, F. Liu, C. Huang, S. F. Yin. ACS Appl. Nano
Mater. 2020, 3, 3578−3584.
Keywords: PCN-224 derivative; pyrolysis; metalloporphyrin;
carbon dioxide conversion; cycloaddition
[1] a) M. Mikkelsen, J. Mikkel, F. C. Krebs, Energy Environ. Sci. 2010, 3, 43–
81; b) D. S. Timmons, T. Buchhlz, C. H. Veeneman, GCB Bioenergy.
2016, 8, 631–643.
[2] a) A. Kathalikkattil, R. Babu, J. Tharun, Catal Surv Asia. 2015, 19, 223–235;
b) M. Q. Zhu, D. Srinivas, S. Bhogeswararao, P. Ratnasamy, Catal
Commun. 2013, 32, 36–40.
[3] a) J. T. Zhang, L. M. Dai, ACS Catal. 2015, 5, 7244-7253; b) Y. Zhao, L.
Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, J. Am.
Chem. Soc. 2013, 4, 1201-1204.
[4] B. Marino, M. Toni, G. Daniel, M. ACS Catal. 2016, 6, 6739−6749.
[5] a) X. D. Lang, L. N. He, Chem. Rec. 2016, 16, 1337–1352; b) B. Li, H. M.
c) L. Jiao, Y. X. Zhou, H. L. Jiang, Chem. Sci. 2016, 7, 1690.
[6] R. Marta, A. Ceren, W. Aaron, I. Thornton, M. Daniel, R. Matthew, Chem.
Soc. Rev. 2017, 46, 3453.
[7] G. C. Wen, G. Y. Zhang, T. L. Hu, H. B. Bu, Coordin Chem Rev. 2019, 5,
79–120.
[8] G. G. Chang, X. C. Ma, Y. C. Zhang, L. Y. Wang, G. Tian, G. W. Liu, J.
Wu, Z. Y. Hu, X. Y. Yang, B. L. Chen, Adv. Mater. 2019, 31, 1904969.
[9] a) H. Zhou, S. Kitagawa, Chem Soc Rev. 2014, 16, 5415-8; b) L. Xiu, W.
Ke, W. Bin, S. Jie, Z. Xiao, X. Ya, H. L. Jian, H. C. Zhou, J. Am. Chem.
Soc. 2017, 139, 211–217.
[10] R. B. Lin, S. C. Xiang, H. B. Xing, W. Zhou, B. L. Chen, Coordin Chem
Rev. 2019,378, 87–103.
[11] a) A. S. Chavis, M. Shengqian, Polyhedron. 2018, 145, 154–165; b) Y. Liu,
A. Kasik, N. Linneen, J. Liu, Y. S. Lin, Chem. Eng. Sci. 2014, 118, 32–40.
Jaroniec, F. Verpoort, J. Catal. 2017, 354, 84–91; b) D. W. Feng, W. C.
Chung, Z. W. Wei, Z. Y. Gu, H. L. Jiang, Y. P. Chen, J. Donald, J.
Darensbourg, H. C. Zhou, J. Am. Chem. Soc. 2013, 135, 17105−17110.
9
This article is protected by copyright. All rights reserved.