E
J. Bielefeld et al.
Letter
Synlett
(5) For selected examples of group 4 metal catalysts for hydroami-
noalkylation reactions, see: (a) Kubiak, R.; Prochnow, I.; Doye, S.
Angew. Chem. Int. Ed. 2009, 48, 1153. (b) Kubiak, R.; Prochnow,
I.; Doye, S. Angew. Chem. Int. Ed. 2010, 49, 2626. (c) Dörfler, J.;
Doye, S. Angew. Chem. Int. Ed. 2013, 52, 1806. (d) Dörfler, J.;
Preuß, T.; Schischko, A.; Schmidtmann, M.; Doye, S. Angew.
Chem. Int. Ed. 2014, 53, 7918. (e) Lühning, L. H.; Brahms, C.;
Nimoth, J. P.; Schmidtmann, M.; Doye, S. Z. Anorg. Allg. Chem.
2015, 641, 2071. (f) Dörfler, J.; Preuß, T.; Brahms, C.; Scheuer,
D.; Doye, S. Dalton Trans. 2015, 44, 12149. (g) Chong, E.; Schafer,
L. L. Org. Lett. 2013, 15, 6002.
(6) For selected examples of group 5 metal catalysts for hydroami-
noalkylation reactions, see: (a) Clerici, M. G.; Maspero, F. Syn-
thesis 1980, 305. (b) Nugent, W. A.; Ovenall, D. W.; Holmes, S. J.
Organometallics 1983, 2, 161. (c) Herzon, S. B.; Hartwig, J. F.
J. Am. Chem. Soc. 2007, 129, 6690. (d) Eisenberger, P.; Ayinla, R.
O.; Lauzon, J. M. P.; Schafer, L. L. Angew. Chem. Int. Ed. 2009, 48,
8361. (e) Reznichenko, A. L.; Hultzsch, K. C. J. Am. Chem. Soc.
2012, 134, 3300. (f) Garcia, P.; Lau, Y. Y.; Perry, M. R.; Schafer, L.
L. Angew. Chem. Int. Ed. 2013, 52, 9144. (g) Chong, E.; Brandt, J.
W.; Schafer, L. L. J. Am. Chem. Soc. 2014, 136, 10898. (h) Brandt,
J. W.; Chong, E.; Schafer, L. L. ACS Catal. 2017, 7, 6323.
(i) Edwards, P. M.; Schafer, L. L. Org. Lett. 2017, 19, 5720.
(j) DiPucchio, R. C.; Roşca, S.-C.; Schafer, L. L. Angew. Chem. Int.
Ed. 2018, 57, 3469.
(7) For examples of titanium-catalyzed intramolecular hydroami-
noalkylation reactions of aminoalkenes, see: (a) Prochnow, I.;
Kubiak, R.; Frey, O. N.; Beckhaus, R.; Doye, S. ChemCatChem
2009, 1, 162. (b) Prochnow, I.; Zark, P.; Müller, T.; Doye, S.
Angew. Chem. Int. Ed. 2011, 50, 6401. (c) Dörfler, J.; Bytyqi, B.;
Hüller, S.; Mann, N. M.; Brahms, C.; Schmidtmann, M.; Doye, S.
Adv. Synth. Catal. 2015, 357, 2265.
(8) Lehmkuhl, H.; Fustero, S. Liebigs Ann. Chem. 1980, 1371.
(9) Elkin, T.; Kulkarni, N. V.; Tumanskii, B.; Botoshansky, M.;
Shimon, L. J. W.; Eisen, M. S. Organometallics 2013, 32, 6337.
(10) 4-Methyl-N-(2-methylenecyclohexyl)aniline (4)
ylmethyl)-4-methylaniline [5; yield: 5 mg (0.02 mmol, 5%)] as a
yellow oil. Crystals of 4 were obtained by slow evaporation of a
solution in hexane.
4
Colorless liquid [yield: 50 mg (0.25 mmol, 50%)]; mp: = 59 °C. IR
(ATR) -1 3410, 2936, 2854, 1612, 1519, 1441, 1398, 1315, 1302,
1259, 1180, 1156, 1140, 1123, 1108, 1086, 908, 804 cm−1 1H
.
NMR (500 MHz, CDCl3): = 1.38-1.46 (m, 2 H), 1.55–1.63 (m,
1 H), 1.79 (dq, J = 16.9, 4.0 Hz, 1 H), 1.88 (dq, J = 16.9, 4.1 Hz,
1 H), 2.03–2.13 (m, 2 H), 2.25 (s, 3 H), 2.44 (dt, J = 13.3, 3.8 Hz,
1 H), 3.71 (dd, J = 10.3, 4.3 Hz, 1 H), 3.75 (br. s, 1 H), 4.77 (s, 1 H),
4.84 (s, 1 H), 6.54 (d, J = 8.3 Hz, 2 H), 6.98 (d, J = 8.1 Hz, 2 H). 13
C
NMR (125 MHz, CDCl3, DEPT): = 20.5 (CH3), 25.4 (CH2), 28.4
(CH2), 34.5 (CH2), 35.7 (CH2), 57.1 (CH), 106.7 (CH2), 113.6 (CH),
126.5 (C), 129.7 (CH), 145.3 (C), 149.6 (C). MS (EI, 70 eV): m/z
(%) = 201 (100) [M]+, 172 (15), 133 (15), 107 (61), 91 (11). HRMS
(EI, 70 eV): m/z [M+] calcd. for C14H19N: 201.1512; found:
201.1511.
(11) For details, see the Supporting Information.
(12) CCDC 1871667 contains the supplementary crystallographic
data for compound 4. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
(13) Allylamines have been used as substrates for nickel-catalyzed
cross-coupling reactions that involve cationic -allyl metal
intermediates, see: Trost, B. M.; Spagnol, M. D. J. Chem. Soc.,
Perkin Trans. 1 1995, 2083.
(14) For selected examples of titanium-catalyzed allene hydroami-
nation with primary amines, see: (a) Johnson, J. S.; Bergman, R.
G. J. Am. Chem. Soc. 2001, 123, 2923. (b) Ackermann, L.;
Bergman, R. G. Org. Lett. 2002, 4, 1475.
(15) For selected examples of hydroamination reactions with sec-
ondary amines achieved with neutral group 4 metal catalysts,
see: (a) Stubbert, B. D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129,
6149. (b) Majumder, S.; Odom, A. L. Organometallics 2008, 27,
1174. (c) Müller, C.; Saak, W.; Doye, S. Eur. J. Org. Chem. 2008,
2731. (d) Leitch, D. C.; Payne, P. R.; Dunbar, C. R.; Schafer, L. L.
J. Am. Chem. Soc. 2009, 131, 18246. (e) Mukherjee, A.;
Nembenna, S.; Sen, T. K.; Pillai Sarish, S.; Ghorai, P. K.; Ott, H.;
Stalke, D.; Mandal, S. K.; Roesky, H. W. Angew. Chem. Int. Ed.
2011, 50, 3968. (f) Leitch, D. C.; Platel, R. H.; Schafer, L. L. J. Am.
Chem. Soc. 2011, 133, 15453.
In a glovebox under N2, amine 1 (101 mg, 0.5 mmol) and cata-
lyst IV (27 mg, 0.05 mmol, 10 mol%) were dissolved in p-
cymene (15 mL) in a 25 mL ampoule equipped with magnetic
stirrer bar. The ampoule was then sealed and heated at 160 °C
for 2.5 h. The product was purified by chromatography [silica
gel (250 g, length = 1 m, diam. = 20 mm), PE–Et2O (20:1, Rf =
0.36)] to give 4 as a colorless liquid [yield: 50 mg (0.25 mmol,
50%)], together with the byproduct N-(cyclohex-1-en-1-
(16) Cabezas, J. A.; Poveda, R. R.; Brenes, J. A. Synthesis 2018, 50,
3307.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–E