S. Schweizer et al. / Tetrahedron 66 (2010) 765–772
771
4.3.2. General procedure for the syntheses of biaryls (3n) and
References and notes
(3q). Catalyst 20a (277 mg, 4 mequiv of Pd) was added to a solution
of aryl chloride (0.65 mmol,1.0 equiv), arylboronic acid (0.91 mmol,
1.4 equiv), CsF (149 mg, 0.98 mmol, 1.5 equiv) in a mixture of tol-
1. (a) Diederich, F.; Stang, P. J. Metal-Catalyzed Cross-Coupling Reactions; Wiley-
VCH: Weinheim, 1998; (b) Tsuji, J. Palladium Reagents and Catalysts: New Per-
spectives for the 21st Century; John Wiley: New York, NY, 2004.
uene (3.5 mL), EtOH (0.25 mL), and H2O (10
mixture was degassed with argon and heated at reflux for 20 h.
After cooling to rt, 20a was filtered under vacuum on a 0.2
m
L). The reaction
2. (a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36, 3437;
(b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (c) Kotha, S.; Lahiri, K.;
Kashinath, D. Tetrahedron 2002, 58, 9633; (d) Hassan, J.; Se´vignon, M.; Gozzi, C.;
Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
m
m
membrane. The catalyst was washed with AcOEt (3ꢂ10 mL). The
organic phase was washed with H2O (20 mL), dried over MgSO4,
filtered and then concentrated under vacuum. The residue was
purified by flash chromatography on silica gel to afford pure biaryls
after drying under vacuum.
3. Other powerful transition metal-catalyzed synthetic methods for the prepa-
ration of biaryls are available. (a) For Cu-catalyzed cross-coupling reactions see:
Fanta, P. E. Synthesis 1974, 9; (b) For Ni-catalyzed cross-coupling reactions see:
Lee, C.-C.; Ke, W.-C.; Chan, K. T.; Lai, C.-L.; Hu, C.-H.; Lee, H. M. Chem.dEur. J.
2007, 13, 582 and references therein; (c) For C–H activation reactions see: Al-
berico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174; (d) For de-
carboxylative Pd-catalyzed reactions see: Becht, J.-M.; Catala, C.; Le Drian, C.;
Wagner, A. Org. Lett. 2007, 9, 1781 and references therein; (e) Becht, J.-M.; Le
Drian, C. Org. Lett. 2008, 10, 3161.
4. (a) Lloyd-Williams, P.; Giralt, E. Chem. Soc. Rev. 2001, 30, 145 and references
therein; (b) Pu, L. Chem. Rev. 1998, 98, 2405 and references therein.
5. (a) De Vos, D. E.; Dams, M.; Sels, B. F.; Jacobs, P. A. Chem. Rev. 2002, 102, 3615;
(b) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B. J. Am.
Chem. Soc. 2002, 124, 14127; (c) Mori, K.; Yamaguchi, T.; Hara, T.; Mizukagi, T.;
Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2002, 124, 11572; (d) Bulut, H.; Artok, L.;
Yilmaz, S. Tetrahedron Lett. 2003, 44, 289; (e) Shimizu, K. I.; Kan-no, T.; Kodama,
T.; Hagiwara, H.; Kitayama, Y. Tetrahedron Lett. 2002, 43, 5653; (f) Baleizao, C.;
Corma, A.; Garcia, H.; Leyva, A. Chem. Commun. 2003, 606; (g) Sayah, R.; Gle-
gola, K.; Framery, E.; Dufaud, V. Adv. Synth. Catal. 2007, 349, 373; (h) Trilla, M.;
Pleixats, R.; Wong Chi Man, M.; Bied, C.; Moreau, J. J. E. Adv. Synth. Catal. 2008,
350, 577.
4.3.2.1. (1-(30-Amino)biphenylyl)ethanone (3n). Elution with
AcOEt/Cyclohexane 10:90 afforded 95 mg (69% yield) of an orange
solid. Mp 162–163 ꢀC (lit. mp 160–161 ꢀC).27 1H NMR (400 MHz,
CDCl3)
d
(ppm): 2.97 (s, 3H), 4.13 (br s, 2H), 7.06 (d, 3J(H,H)¼8.1 Hz,
1H), 7.35 (d, 3J(H,H)¼7.6 Hz, 1H), 7.60 (m, 2H), 7.99 (d,
3J(H,H)¼7.9 Hz, 2H), 8.34 (d, 3J(H,H)¼7.9 Hz, 2H).11b
4.3.2.2. (1-(30-Nitro)biphenylyl)ethanone (3q). Elution with
AcOEt/Cyclohexane 10:90 afforded 122 mg (78% yield) of a yellow-
ish solid. Mp 110–111 ꢀC (lit. mp 110.5–111 ꢀC).28 1H NMR
(400 MHz, CDCl3)
d
(ppm): 2.68 (s, 3H), 7.67 (t, 3J(H,H)¼8.0 Hz, 1H),
6. (a) Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217; (b) McNamara, C. A.;
Dixon, M. J.; Bradley, M. Chem. Rev. 2002, 102, 3275; (c) Dickerson, T. J.; Reed, N.
N.; Janda, K. D. Chem. Rev. 2002, 102, 3325; (d) Bergbreiter, D. E. Chem. Rev.
2002, 102, 3345; Lu, J.; Toy, P. H. Chem. Rev. 2009, 109, 815.
7. (a) Ramarao, C.; Ley, S. V.; Smith, S. C.; Shirley, I. M.; DeAlmeida, N. Chem.
Commun. 2002, 1132; (b) Ley, S. V.; Ramarao, C.; Gordon, R. S.; Holmes, A. B.;
Morrison, A. J.; McConvey, I. F.; Shirley, I. M.; Smith, S. C.; Smith, M. D. Chem.
7.74 (d, 3J(H,H)¼8.2 Hz, 2H), 7.96 (d, 3J(H,H)¼8.0 Hz, 1H), 8.09 (d,
3J(H,H)¼8.2 Hz, 2H), 8.27 (d, 3J(H,H)¼8.0 Hz, 1H), 8.50 (s, 1H).
4.4. General procedure for hot filtration and determination of
the Pd leached in the reaction medium during the Suzuki
reaction
´
´
Commun. 2002, 1134; (c) Trzeciak, A. M.; Mieczynska, E.; Ziolkowski, W.;
Bukowska, A.; Noworo´l, J.; Okal, J. New J. Chem. 2008, 32, 1124.
8. (a) Akiyama, R.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 3412; (b) Okamoto, K.;
Akiyama, R.; Kobayashi, S. Org. Lett. 2004, 6, 1987; (c) Nishio, R.; Sugiura, M.;
Kobayashi, S. Org. Lett. 2005, 7, 4831; (d) Hagio, H.; Sugiura, M.; Kobayashi, S.
Org. Lett. 2006, 8, 375; (e) Akiyama, R.; Kobayashi, S. Chem. Rev. 2009, 109, 594.
9. (a) Kim, J.-H.; Kim, J.-W.; Shokouhimehr, M.; Lee, Y.-S. J. Org. Chem. 2005, 70,
6714; (b) Byun, J.-W.; Lee, Y.-S. Tetrahedron Lett. 2004, 45, 1837; (c) Shokouhi-
mehr, M.; Kim, J.-H.; Lee, Y.-S. Synlett 2006, 4, 618.
The reaction mixture was filtered at reaction temperature on
a
0.2 mm membrane and the catalyst washed with AcOEt
(3ꢂ10 mL). For Pd determinations, the filtrates were combined and
evaporated under reduced pressure. A mixture of concentrated
H2SO4 (3 mL) and fuming HNO3 (2 mL) was added to the residue.
This mixture was heated in a fume hood until disappearance of
nitric fumes, complete evaporation of HNO3 and beginning of the
reflux of the remaining H2SO4. After cooling to 100 ꢀC, fuming
HNO3 (2 mL) was then added, the mixture was heated until evap-
oration of HNO3 and this process was repeated three times, the
heating of the sample in acids during, as a whole, 25 min. Most of
the H2SO4 was then boiled off and after cooling a mixture of con-
centrated HCl (2 mL) and concentrated HNO3 (2 mL) was added and
heated until evaporation of the acids. The residue was then dis-
solved in H2O (25 mL) and the amount of Pd present in this mixture
was then determined by complexation following a procedure de-
scribed in the lit.29 or by ICP-MS.
10. (a) Andersson, C.-M.; Karabelas, K.; Hallberg, A. J. Org. Chem. 1985, 50, 3891; (b)
´
´
Riegel, N.; Darcel, C.; Stephan, O.; Juge, S. J. Organomet. Chem. 1998, 567, 219; (c)
Uozomi, Y.; Danjo, H.; Hayashi, T. J. Org. Chem. 1999, 64, 3384; (d) Dahan, A.;
Portnoy, M. Org. Lett. 2003, 5, 1197; (e) Uozomi, Y.; Kimura, T. Synlett 2002,
2045; (f) Yamada, Y. M.; Takeda, K.; Takahashi, H.; Ikegami, S. J. Org. Chem. 2003,
68, 7733; (g) Kang, T.; Feng, Q.; Luo, M. Synlett 2005, 15, 2305; (h) Guino´, M.;
Hii, K. K. Chem. Soc. Rev. 2007, 36, 608; (i) Lombardo, M.; Chiarucci, M.;
Trombini, C. Green Chem. 2009, 11, 574.
11. (a) Fenger, I.; Le Drian, C. Tetrahedron Lett. 1998, 39, 4287; (b) Schweizer, S.;
Becht, J.-M.; Le Drian, C. Adv. Synth. Catal. 2007, 349, 1150; (c) Schweizer, S.;
Becht, J.-M.; Le Drian, C. Org. Lett. 2007, 9, 3777.
12. (a) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2004, 43, 1871; (b) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L.
J. Am. Chem. Soc. 2005, 127, 4685; (c) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed.
1998, 37, 3387; (d) Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed.
2000, 39, 4153; (e) Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem.
1999, 64, 3804; (f) Navarro, O.; Kelly, R. A.; Nolan, S. P. J. Am. Chem. Soc. 2003,
125, 16194; (g) Ackermann, L.; Born, R. Angew. Chem., Int. Ed. 2005, 44, 2444; (h)
Colacot, T. J.; Shea, H. A. Org. Lett. 2004, 6, 3731; (i) Botella, L.; Na´jera, C. Angew.
Chem., Int. Ed. 2002, 41, 179; (j) Dai, Q.; Gao, W.; Liu, D.; Kapes, L. M.; Zhang, X.
J. Org. Chem. 2006, 71, 3928; (k) Wu¨rtz, S.; Glorius, F. Acc. Chem. Res. 2008, 41,
1523.
4.5. General procedure for the determination of the Pd
content of the catalyst
13. (a) Inada, K.; Miyaura, N. Tetrahedron 2000, 56, 8661; (b) Parrish, C. A.; Buch-
wald, S. L. J. Org. Chem. 2001, 66, 3820; (c) Glegola, K.; Framery, E.; Pie-
trusiewicz, K. M.; Sinou, D. Adv. Synth. Catal. 2006, 348, 1728; (d) Bedford, R. B.;
Coles, S. J.; Hursthouse, M. B.; Scordia, V. J. M. Dalton Trans. 2005, 991; (e)
Sommer, W. J.; Weck, M. Adv. Synth. Catal. 2006, 348, 2101; (f) Leyva, A.; Garcı´a,
H.; Corma, A. Tetrahedron 2007, 63, 7097; (g) Colacot, T. J.; Carole, W. A.; Neide,
B. A.; Harad, A. Organometallics 2008, 27, 5605.
The same procedure as above was used using a 20 mg sample of
catalyst instead of the reaction residue. Three independent exper-
iments were performed and the average value retained.
14. Schweizer, S.; Becht, J.-M.; Le Drian, C. Fr. Patent FR2,914,867, Application Nr.
2007-54500, April/16/2007; PCT Extension FR2008/050639, April/11/2008
(University of Haute Alsace/CNRS).
Acknowledgements
15. Noteworthily when sec- or n-butyllithium was reacted with dichloro-
phenylphosphine by using the same reaction conditions than for the prepa-
ration of 1a, only complex mixtures were obtained. Several attempts were then
carried out in order to prepare sec- or n-butylchlorophenylphosphine by
changing the nature of the solvent (Et2O, THF), the temperature of the reaction
(ꢁ78 ꢀC in Et2O or THF), replacing the alkyllithium reagents with the corre-
sponding Grignard reagents, but all were unsuccessful.
`
´
We thank the Ministere de l’Enseignement Superieur et de la
Recherche for financial support of this work through a grant to S.
Schweizer. We are also grateful to the Centre National de la
Recherche Scientifique for financial support, to Dr. D. Le Noue¨n
(FRE-CNRS 3253) for NMR spectra and to Dr. L. Vidal (LRC-CNRS
7228) for TEM images.