Journal of the American Chemical Society
Communication
While we have demonstrated the use of TBEU for water
degradable materials within days under mild conditions, less
bulky urea might be used for applications which need longer
lasting time or harsher degradation conditions (such as poly(8/
Chem., Int. Ed. 2008, 47, 4830−4834. (c) Yoshimoto, H.; Shin, Y. M.;
Terai, H.; Vacanti, J. P. Biomaterials 2003, 24, 2077−2082.
(d) Samarajeewa, S.; Shrestha, R.; Li, Y. L.; Wooley, K. L. J. Am.
Chem. Soc. 2012, 134, 1235−1242. (e) Almutairi, A.; Rossin, R.;
Shokeen, M.; Hagooly, A.; Ananth, A.; Capoccia, B.; Guillaudeu, S.;
Abendschein, D.; Anderson, C. J.; Welch, M. J.; Frechet, J. M. J. Proc.
Natl. Acad. Sci. U.S.A. 2009, 106, 685−690.
1
0) or its derivatives). Second, different from traditional
hydrolyzable polymers, pHUBs could be synthesized by simple
mixing of amine and isocyanate at ambient condition with no
catalyst and further purification needed and no byproducts
generated, which made it possible for end-users to control the
copolymer recipe for specific use without the need of
complicated synthesis apparatus. Additionally, a large number
of isocyanates monomers have been developed for use in the
polyurethane and polyurea plastic industry, which can be used
to react with amines with N-bulky substituents to give a very
large library of hydrolyzable polymers with versatile structures
and functions.
(7) (a) Yin, L.; Huang, X.; Xu, H. X.; Zhang, Y. F.; Lam, J.; Cheng, J.
J.; Rogers, J. A. Adv. Mater. 2014, 26, 3879−3884. (b) Rutherglen, B.
G.; McBath, R. A.; Huang, Y. L.; Shipp, D. A. Macromolecules 2010, 43,
10297−10303.
(8) (a) Heller, J.; Barr, J.; Ng, S. Y.; Abdellauoi, K. S.; Gurny, R. Adv.
Drug Delivery Rev. 2002, 54, 1015−1039. (b) Du, F. S.; Huang, X. N.;
Chen, G. T.; Lin, S. S.; Liang, D. H.; Li, Z. C. Macromolecules 2010, 43,
2
(
2
474−2483.
9) (a) Binauld, S.; Stenzel, M. H. Chem. Commun. 2013, 49, 2082−
102. (b) Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.;
Feng, P. Y. J. Am. Chem. Soc. 2010, 132, 1500−1501.
10) (a) Zhang, Y. F.; Wang, R.; Hua, Y. Y.; Baumgartner, R.; Cheng,
(
ASSOCIATED CONTENT
Supporting Information
■
J. J. ACS Macro Lett. 2014, 3, 693−697. (b) Shenoi, R. A.;
Narayanannair, J. K.; Hamilton, J. L.; Lai, B. F. L.; Horte, S.;
Kainthan, R. K.; Varghese, J. P.; Rajeev, K. G.; Manoharan, M.;
Kizhakkedathu, J. N. J. Am. Chem. Soc. 2012, 134, 14945−14957.
*
S
Binding constants, dissociation rates, and hydrolysis kinetics of
model compounds, polymer synthesis, hydrolysis character-
(
c) Broaders, K. E.; Pastine, S. J.; Grandhe, S.; Frechet, J. M. J. Chem.
Commun. 2011, 47, 665−667.
11) Garcia, J. M.; Jones, G. O.; Virwani, K.; McCloskey, B. D.;
(
Boday, D. J.; ter Huurne, G. M.; Horn, H. W.; Coady, D. J.; Bintaleb,
A. M.; Alabdulrahman, A. M. S.; Alsewailem, F.; Almegren, H. A. A.;
Hedrick, J. L. Science 2014, 344, 732−735.
AUTHOR INFORMATION
(12) Fishman, J. M.; Kiessling, L. L. Angew. Chem., Int. Ed. 2013, 52,
5
(
061−5064.
Notes
13) (a) Kim, Y. H.; Park, J. H.; Lee, M.; Kim, Y. H.; Park, T. G.;
The authors declare no competing financial interest.
Kim, S. W. J. Controlled Release 2005, 103, 209−219. (b) Zhao, Y. L.;
Li, Z. X.; Kabehie, S.; Botros, Y. Y.; Stoddart, J. F.; Zink, J. I. J. Am.
Chem. Soc. 2010, 132, 13016−13025. (c) Xu, X. W.; Flores, J. D.;
McCormick, C. L. Macromolecules 2011, 44, 1327−1334.
ACKNOWLEDGMENTS
■
This work is supported by United States National Science
Foundation (CHE1153122) and United States National
Institute of Health (Director’s New Innovator Award
(14) (a) Xiong, M. H.; Bao, Y.; Yang, X. Z.; Wang, Y. C.; Sun, B. L.;
Wang, J. J. Am. Chem. Soc. 2012, 134, 4355−4362. (b) Zhang, S. Y.;
Zou, J.; Zhang, F. W.; Elsabahy, M.; Felder, S. E.; Zhu, J. H.; Pochan,
D. J.; Wooley, K. L. J. Am. Chem. Soc. 2012, 134, 18467−18474.
1
DP2OD007246-01). We thank Ryan Baumgartner for
collecting data of polymers thermal analysis.
(
15) (a) Deng, M.; Kumbar, S. G.; Nair, L. S.; Weikel, A. L.; Allcock,
H. R.; Laurencin, C. T. Adv. Funct. Mater. 2011, 21, 2641−2651.
b) Park, M. R.; Chun, C. J.; Ahn, S. W.; Ki, M. H.; Cho, C. S.; Song,
S. C. J. Controlled Release 2010, 147, 359−367.
16) Ajellal, N.; Carpentier, J. F.; Guillaume, C.; Guillaume, S. M.;
Helou, M.; Poirier, V.; Sarazin, Y.; Trifonov, A. Dalton Trans. 2010, 39,
363−8376.
17) (a) Hansen, G. P.; Dominguez, R. J. G.; Hoppens, N. C.;
Shields, E. S.; Bulluck, J. W.; Rushing, R. A. US 20110082274, 2011.
b) Fazel, S. N.; Bender, J. D. US 20140221567, 2014. (c) Barker, M.
J. US 20120295104, 2012.
18) (a) Grover, A. K.; Kapoor, M. Can. J. Biochem. 1973, 51, 363−
78. (b) Hutchby, M.; Houlden, C. E.; Ford, J. G.; Tyler, S. N. G.;
REFERENCES
■
(
(
9
1) (a) Petros, R. A.; DeSimone, J. M. Nat. Rev. Drug Discovery 2010,
, 615−627. (b) Duncan, R. Nat. Rev. Cancer 2006, 6, 688−701.
c) Tong, R.; Cheng, J. J. Polym. Rev. 2007, 47, 345−381. (d) Yin, Q.;
Tong, R.; Yin, L. C.; Fan, T. M.; Cheng, J. J. Polym. Chem. 2014, 5,
581−1585.
2) (a) Langer, R.; Vacanti, J. P. Science 1993, 260, 920−926.
b) Sun, H. L.; Meng, F. H.; Dias, A. A.; Hendriks, M.; Feijen, J.;
(
(
8
(
1
(
(
(
Zhong, Z. Y. Biomacromolecules 2011, 12, 1937−1955. (c) Annabi, N.;
Tamayol, A.; Uquillas, J. A.; Akbari, M.; Bertassoni, L. E.; Cha, C.;
Camci-Unal, G.; Dokmeci, M. R.; Peppas, N. A.; Khademhosseini, A.
Adv. Mater. 2014, 26, 85−124. (d) Wang, Y. D.; Ameer, G. A.;
Sheppard, B. J.; Langer, R. Nat. Biotechnol. 2002, 20, 602−606.
(
3
Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Angew. Chem.,
Int. Ed. 2009, 48, 8721−8724.
(
(
3) (a) Ulery, B. D.; Nair, L. S.; Laurencin, C. T. J. Polym. Sci., Part B:
Polym. Phys. 2011, 49, 832−864. (b) Lendlein, A.; Langer, R. Science
002, 296, 1673−1676.
4) (a) Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H. Y.; Song, J. K.;
19) (a) Ying, H. Z.; Zhang, Y. F.; Cheng, J. J. Nat. Commun. 2014, 5,
218. (b) Cheng, J.; Ying, H. WO 2014144539, 2014.
3
2
(
Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S.; Song, Y.
M.; Yu, K. J.; Ameen, A.; Li, R.; Su, Y. W.; Yang, M. M.; Kaplan, D. L.;
Zakin, M. R.; Slepian, M. J.; Huang, Y. G.; Omenetto, F. G.; Rogers, J.
A. Science 2012, 337, 1640−1644. (b) Hwang, S. W.; Park, G.; Cheng,
H.; Song, J. K.; Kang, S. K.; Yin, L.; Kim, J. H.; Omenetto, F. G.;
Huang, Y. G.; Lee, K. M.; Rogers, J. A. Adv. Mater. 2014, 26, 1992−
2
000.
5) (a) Gross, R. A.; Kalra, B. Science 2002, 297, 803−807.
b) Tharanathan, R. N. Trends Food Sci. Technol. 2003, 14, 71−78.
6) (a) Nampoothiri, K. M.; Nair, N. R.; John, R. P. Bioresour.
Technol. 2010, 101, 8493−8501. (b) Tong, R.; Cheng, J. J. Angew.
(
(
(
D
dx.doi.org/10.1021/ja5093437 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX