Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C8CC02855A
COMMUNICATION
Journal Name
8 (a) J. H. Kim, D. A. Heller, H. Jin, P. W. Barone, C. Song, J. Zhang,
L. J. Trudel, G. N. Wogan, S. R. Tannenbaum and M. S. Strano,
Nat. Chem., 2009, 1, 473; (b) E. Eroglu, B. Gottschalk, S.
Charoensin, S. Blass, H. Bischof, R. Rost, C. T. Madreiter-
Sokolowski, B. Pelzmann, E. Bernhart, W. Sattler, S. Hallström,
T. Malinski, M. Waldeck-Weiermair, W. F. Graier and R. Malli,
individual bacteria. The SERS platform was fabricated by the
combination of a novel NO reporter with the plasmonic
nanostructure, which was demonstrated to be highly selective,
sensitive and fast responsive towards NO generation. Using this
platform, we elucidated that both the antibiotics ampicillin and
vancomycin could induce NO generation in MRSA in a
concentrationꢀdependent manner. Moreover, we realized the in
situ and precise SERS imaging of NO release at a single MRSA
level in a polymicrobial infection model. This work not only
provides more understanding of NO generation in bacterial
physiological processes but also affords a new idea to fabricate
SERS platform for various bacteria secretions sensing.
Nat. Commun., 2016, 7, 10623.
9 (a) Y. Q. Sun, J. Liu, H. Zhang, Y. Huo, X. Lv, Y. Shi and W. Guo, J.
Am. Chem. Soc., 2014, 136, 12520; (b) J. Wang, C. He, P. Wu, J.
Wang and C. Duan, J. Am. Chem. Soc., 2011, 133, 12402; (c) H.
Yu, Y. Xiao and L. Jin, J. Am. Chem. Soc., 2012, 134, 17486; (d) L.
Yuan, W. Lin, Y. Xie, B. Chen and S. Zhu, J. Am. Chem. Soc.,
2012, 134, 1305.
10 (a) X. Chen, L. Sun, Y. Chen, X. Cheng, W. Wu, L. Ji and H. Chao,
Biomaterials, 2015, 58, 72; (b) X. Liu, S. Liu and G. Liang,
Analyst, 2016, 141, 2600; (c) H. W. Yao, X. Y. Zhu, X. F. Guo and
H. Wang, Anal. Chem., 2016, 88, 9014; (d) Z. Dai, L. Tian, B.
Song, X. Liu and J. Yuan, Chem. Sci., 2017,
W. Feng, Z. Li, L. Zeng, W. Lv and Z. Liu, Chem. Sci., 2016,
8, 1969; (e) Z. Mao,
7
,
5230; (f) N. Wang, X. Yu, K. Zhang, C. A. Mirkin and J. Li, J. Am.
Chem. Soc., 2017, 139, 12354.
11 (a) L. J. Xu, Z. C. Lei, J. Li, C. Zong, C. J. Yang and B. Ren, J. Am.
Chem. Soc., 2015, 137, 5149; (b) S. R. Panikkanvalappil, M.
James, S. M. Hira, J. Mobley, T. Jilling, N. Ambalavanan and M.
A. El-Sayed, J. Am. Chem. Soc., 2016, 138, 3779; (c) Q. Jin, M. Li,
B. Polat, S. K. Paidi, A. Dai, A. Zhang, J. V. Pagaduan, I. Barman
and D. H. Gracias, Angew. Chem. Int. Ed., 2017, 56, 3822; (d) S.
Fig. 4 SERS images monitored at 1446 cm-1 of the MRSA after being
cultured in LB (the left), co-cultured with PA01 (the middle) and co-
cultured in the presence of the NOS inhibitor (the right). The
pictures in the bottom row showed their corresponding bright field
images. Scale bar = 2 μm.
Tanwar, K. K. Haldar and T. Sen, J. Am. Chem. Soc., 2017, 139
,
17639; (e) L. Xu, S. Zhao, W. Ma, X. Wu, S. Li, H. Kuang, L.
Wang and C. Xu, Adv. Funct. Mater., 2016, 26, 1602; (f) J.
Morla-Folch, P. Gisbert-Quilis, M. Masetti, E. Garcia-Rico, R. A.
Alvarez-Puebla and L. Guerrini, Angew. Chem. Int. Ed., 2017, 56
2381.
,
This work was partially supported by NTUꢀAITꢀMUV
NAM/16001, RG110/16 (S), (RG 11/13) and (RG 35/15),
NTUꢀJSPS JRP grant (M4082175.110) awarded in Nanyang
Technological University, Singapore and National Natural
Science Foundation of China (NSFC) (No. 51628201).
12 (a) A. Kumar, S. Kim and J. M. Nam, J. Am. Chem. Soc., 2016,
138, 14509; (b) D. Cialla-May, X. S. Zheng, K. Weber and J.
Popp, Chem. Soc. Rev., 2017, 46, 3945; (c) L. E. Jamieson, S. M.
Asiala, K. Gracie, K. Faulds and D. Graham, Annu. Rev. Anal.
Chem., 2017, 10, 415; (d) J. Zhang, P. Joshi, Y. Zhou, R. Ding
and P. Zhang, Chem. Commun., 2015, 51, 15284; (e) X. Kuang,
S. Ye, X. Li, Y. Ma, C. Zhang and B. Tang, Chem. Commun., 2016,
52, 5432; (f) M. S. Strozyk, D. J. de Aberasturi, J. V. Gregory, M.
Brust, J. Lahann and L. M. Liz-Marzán, Adv. Funct. Mater., 2017,
Conflicts of interest
27
.
There are no conflicts to declare.
13 D. W. Li, L. L. Qu, K. Hu, Y. T. Long and H. Tian, Angew. Chem.
Int. Ed., 2015, 54, 12758.
14 (a) P. Rivera_Gil, C. Vazquez-Vazquez, V. Giannini, M. P.
Callao, W. J. Parak, M. A. Correa-Duarte and R. A. Alvarez-
Puebla, Angew. Chem. Int. Ed., 2013, 52, 13694; (b) J. Cui, K.
Hu, J. J. Sun, L. L. Qu and D. W. Li, Biosens. Bioelectron., 2016,
85, 324; (c) Q. Xu, W. Liu, L. Li, F. Zhou, J. Zhou and Y. Tian,
Chem. Commun., 2017, 53, 1880.
15 Z. Zhang, E. Ju, W. Bing, Z. Wang, J. Ren and X. Qu, Chem.
Commun., 2017, 53, 8415.
16 H. Zheng, G. Q. Shang, S. Y. Yang, X. Gao and J. G. Xu, Org.
Lett., 2008, 10, 2357.
17 B. G. Xing, C. W. Yu, P. L. Ho, K. H. Chow, T. Cheung, H. Gu, Z.
Cai and B. Xu, J. Med. Chem., 2003, 46, 4904.
18 T. Gverzdys, M. K. Hart, S. Pimentel-Elardo, G. Tranmer and J.
R. Nodwell, J. Antibiot., 2015, 68, 698.
19 N. Nair, R. Biswas, F. Götz and L. Biswas, Infect. Immun., 2014,
82, 2162.
References
1 L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns and G.
Chaudhuri, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 9265.
2 (a) C. Bogdan, Trends Immunol., 2015, 36, 161; (b) D.
Fukumura, S. Kashiwagi and R. K. Jain, Nat. Rev. Cancer, 2006,
6
, 521.
3 U. Förstermann and W. C. Sessa, Eur. Heart J., 2012, 33, 829.
4 A. Pautz, J. Art, S. Hahn, S. Nowag, C. Voss and H. Kleinert,
Nitric Oxide, 2010, 23, 75.
5 T. L. Kinkel, S. Ramos-Montañez, J. M. Pando, D. V. Tadeo, E. N.
2,
Strom, S. J. Libby and F. C. Fang, Nat. Microbiol., 2016,
16224.
6 (a) Q. Shao, Y. Zheng, X. Dong, K. Tang, X. Yan and B. G. Xing,
Chem. – Eur. J., 2013, 19, 10903; (b) Q. Shao and B. G. Xing,
Chem. Commun., 2012, 48, 1739; (c) W. Li, K. Dong, J. Ren and
X. Qu, Angew. Chem. Int. Ed., 2016, 55, 8049.
7 (a) N. M. van Sorge, F. C. Beasley, I. Gusarov, D. J. Gonzalez, M.
von Köckritz-Blickwede, S. Anik, A. W. Borkowski, P. C.
Dorrestein, E. Nudler and V. Nizet, J. Biol. Chem., 2013, 288
,
6417; (b) D. P. Arora, S. Hossain, Y. Xu and E. M. Boon,
Biochemistry, 2015, 54, 3717; (c) I. Gusarov, K. Shatalin, M.
Starodubtseva and E. Nudler, Science, 2009, 325, 1380.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins