6
050
F. Shi et al. / Tetrahedron Letters 51 (2010) 6049–6051
Table 1
9. (a) Naota, T.; Murahashi, S. I. Synlett 1991, 693; (b) Tillack, A.; Rudloff, I.; Beller,
M. Eur. J. Org. Chem. 2001, 523; (c) Chang, J. W. W.; Chan, P. W. H. Angew. Chem.,
Int. Ed. 2008, 47, 1138; (d) Yoo, W. J.; Li, C. J. J. Am. Chem. Soc. 2006, 128, 13064.
Synthesis of amides from acyl chlorides and amines by using samarium metal at room
temperaturea
1
0. Cho, S.; Yoo, E.; Bae, I.; Chang, S. J. Am. Chem. Soc. 2005, 127, 16046.
11. (a) Zhang, X.; Li, F.; Lu, X. W.; Liu, C. F. Bioconjugate Chem. 2009, 20, 197; (b)
Kolakowski, R. V.; Shangguan, N.; Sauers, R. R.; Williams, L. J. J. Am. Chem. Soc.
Entry Amine
Acyl chloride
Time
h)
Yieldb
(%)
(
2
006, 128, 5695.
1
2
3
PhNH
PhNH
PhNH
2
2
2
PhCOCl
2
2
3
93 (1a)
95 (1b)
90 (1c)
1
1
2. Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790.
3. (a) Scribner, R. M. Tetrahedron Lett. 1976, 17, 3853; (b) Bodanszky, M.; Conklin,
L. J. Chem. Soc., Chem. Commun. 1967, 773; (c) Zimmerman, J. E.; Anderson, G.
W. J. Am. Chem. Soc. 1967, 89, 7151; (d) Haver, A. C.; Smith, D. D. Tetrahedron
Lett. 1993, 34, 2239; (e) Miyazawa, T.; Otomatsu, T.; Yamada, T.; Kuwata, S.
Tetrahedron Lett. 1984, 25, 771; (f) Gamet, J. P.; Jacquier, R.; Verducci, J.
Tetrahedron 1984, 40, 1995; (g) Arendt, A.; Kolodziejczyk, A. M.; Sokolowska, T.
Tetrahedron Lett. 1978, 19, 2711; (h) Chen, F. M. S.; Stainauer, R.; Benoiton, N. L.
J. Org. Chem. 1983, 48, 2939; (i) Bodanszky, M.; Bodanszky, A. J. Chem. Soc.,
Chem. Commun. 1967, 591.
p-ClC
p-
6
H
4
COCl
MeOC
6
H
4
COCl
COCl
4
5
6
7
8
9
PhNH
PhNH
PhNH
PhNH
2
2
2
2
p-MeC
6
H
4
2
3
2
2
4
4
92 (1d)
99 (1e)
97 (1f)
97 (1g)
95 (1h)
92 (1i)
PhCH
t-BuCOCl
CH (CH
2
COCl
3
2
6
) COCl
p-MeOC
p-MeOC
6
H
H
4
NH
NH
2
2
p-ClC
p-
H COCl
6 4
6
4
MeOC
p-
MeOC
p-
6
6
6
H
H
H
4
COCl
COCl
COCl
14. (a) Meshram, H. M.; Reddy, G. S.; Reddy, M. M.; Yadav, J. S. Tetrahedron Lett.
1998, 39, 4103; (b) Cho, D. H.; Jang, D. O. Tetrahedron Lett. 2004, 45, 2285.
15. (a) Ghatak, A.; Becler, F. F.; Banik, B. K. Tetrahedron Lett. 2000, 41, 3793; (b) Liu,
Y.; Xu, X.; Zhang, Y. Tetrahedron 2004, 60, 4867; For review, see: (c) Banik, B. K.
Eur. J. Org. Chem. 2002, 2431.
6. (a) Jia, X.; Liu, X.; Li, J.; Zhao, P.; Zhang, Y. Tetrahedron Lett. 2007, 48, 971; (b) Li,
S.; Li, J.; Jia, X. Synlett 2007, 1115; (c) Bian, H.; Li, J.; Li, C.; Wang, G.; Duan, Z.;
Jia, X. Synlett 2010, 1412.
1
0
1
p-ClC
6
H
4
NH
2
4
3
91 (1j)
89 (1k)
4
4
1
p-MeC
6
H
NH
4 2
MeOC
1
1
1
2
3
t-BuNH
t-BuNH
2
2
PhCOCl
p-ClC
3
3
85 (1l)
87
6
H
4
COCl
(1m)
1
7. General procedure for the homocoupling of terminal alkynes: To
a stirred
1
4
t-BuNH
t-BuNH
c-Hexylamine
c-Hexylamine
c-Hexylamine
Morpholine
Morpholine
(S)-Ethyl 2-amino-3-
phenylpropanoate
2
2
p-O
2
N
2
92 (1n)
suspension of samarium powder (4 mmol) in CH CN (10 mL) were added
3
6 4
C H COCl
t-BuCOCl
PhCOCl
6 4
p-MeC H COCl
PhCH@CHCOCl
PhCOCl
t-BuCOCl
PhCOCl
acid chloride (6 mmol) and amine (6 mmol) successively at room temperature.
The reaction mixture was stirred at room temperature for given time (Table 1).
The progress of the reaction was monitored by TLC. After completion of the
reaction, the mixture was filtered and the solid was washed with
dichloromethane. The solvent was removed under reduced pressure. The
residue was purified by column chromatography on silica gel eluting with
petroleum ether/ethyl acetate (5:1) to afford the corresponding amides 1 in
excellent yields. All the compounds were reported in the literatures and were
identified by melting points, IR, 1H NMR, and C NMR spectra.
15
16
17
18
19
20
21
2
3
2
2
4
3
2
96 (1o)
94 (1p)
92 (1q)
96 (1r)
82 (1s)
85 (1t)
83 (1u)
13
1
8
1
Compound 1a: mp 162.7–163.2 °C (lit. 163 °C); H NMR (300 MHz, CDCl
3
) d:
7.89 (s, 1H), 7.86 (d, J = 9.0 Hz, 2H), 7.66–7.15 (m, 8H); C NMR (75.4 MHz,
CDCl ) d: 165.9, 137.6, 135.1, 131.7, 129.3, 129.1, 128.5, 126.9, 124.7, 120.0,
118.4, 114.9; IR (KBr)
Compound 1b: mp 200.8–201.1 °C (lit. 199.5–200 °C); 1H NMR (300 MHz,
CDCl ) d: 7.94 (s, 1H), 7.85 (d, J = 9.0 Hz, 2H), 7.66–7.12 (m, 7H); IR (KBr)
351, 1654, 1598 cm
Compound 1c: mp.173.4–174.1 °C (lit.20 170–171 °C); 1H NMR (300 MHz,
a
13
Reaction conditions: samarium (4 mmol), acid chloride (6 mmol), amine
6 mmol).
(
3
ꢀ
1
b
m: 3344, 1656, 1599 cm .
19
Isolated yields.
3
m:
ꢀ
1
3
.
the applicability of a wider range of substrates and the neutral con-
ditions. The procedure will also provide alternative opportunities
for the preparation of the amides.
CDCl
3
) d: 7.85 (d, J = 12.0 Hz, 2H), 7.82 (s, 1H), 7.64–6.95 (m, 7H), 3.88 (s,
ꢀ
1
1
3H); IR (KBr)
m
: 3338, 2959, 1656, 1599 cm
.
21
Compound 1d: mp 141–142 °C (lit. 145 °C). H NMR (300 MHz, CDCl
3
) d: 7.89
(
1
s, 1H), 7.78–7.14 (m, 9H), 2.42 (s, 3H); IR (KBr)
597 cm .
m
:
3340, 2958, 1657,
ꢀ
1
Acknowledgments
Compound 1e: mp 118.5-119.3 °C (lit.22 117–118 °C); 1H NMR (300 MHz,
CDCl
1601 cm
Compound 1f: mp 132–133 °C (lit. 132 °C); H NMR (300 MHz, CDCl
3
) d: 7.89 (s, 1H), 7.43–7.07 (m, 10H), 3.73 (s, 2H); IR (KBr) m: 3285, 1658,
ꢀ
1
The authors thank the National Natural Science Foundation of
China (Nos: 20872087 and 20902057), the Key Laboratory of
Synthetic Chemistry of Natural Substances, Chinese Academy of
Sciences and the Innovation Fund of Shanghai University for finan-
cial support.
.
23
1
3
) d: 7.46
m, 2H), 7.23 (m, 3H), 7.05 (m, 1H), 1.28(s, 9H); C NMR (75.4 MHz, CDCl ) d:
: 3314, 2986, 2963, 2931,
13
(
3
1
76.5, 138.1, 128.9, 124.1, 120.2, 39.5, 27.6; IR (KBr) m
ꢀ
1
1654, 1596 cm
.
Compound 1g: mp 50–52 °C (lit. 48–51 °C); 1H NMR (500 MHz, CDCl
24
) d: 8.03
br s, 1H), 7.53 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 15.5 Hz, 2H), 7.06 (t, J = 7.0 Hz,
3
(
1
H), 2.31 (t, J = 15.0 Hz, 2H), 1.71–1.66 (m, 2H), 1.34–1.21 (m, 8H), 0.87 (t,
References and notes
J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl ) d: 172.2, 138.2, 128.9, 124.2, 120.2,
3
3
7.8, 31.8, 29.3, 29.1, 25.8, 22.7, 14.1; IR (KBr) m: 3313, 2925, 2850, 1656,
ꢀ
1
1
.
(a) Bode, J. W. Curr. Opin. Drug Disco. Devel. 2006, 9, 765; (b) Humphrey, J. M.;
Chamberlin, A. R. Chem. Rev. 1997, 97, 2243; (c) Cupido, T.; Tulla-Puche, J.;
Spengler, J.; Albericio, F. Curr. Opin. Drug Discov. Devel. 2007, 10, 768.
(a) Larock, R. C. In Comprehensive Organic Transformations; VCH: New York,
1600 cm .
Compound 1h: mp 207.3–207.9 °C (lit. 209.3–210 °C); 1H NMR (300 MHz,
25
CDCl
3
) d: 7.81 (d, J = 12.0 Hz, 2H), 7.67 (s, 1H), 7.54–7.45 (m, 4H), 6.93 (d,
ꢀ
1
2
.
J = 9.0 Hz, 2H), 3.82 (s, 3H); IR (KBr)
Compound 1i: mp 201–202 °C (lit. 200–203 °C); H NMR (300 MHz, CDCl
m
: 3346, 2957, 1648, 1599 cm .
26
1
1
999; (b) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606; (c) Han, S. Y.;
3
) d:
Kim, Y. A. Tetrahedron 2004, 60, 2447; (d) Montalbetti, C. A. G. N.; Falque, V.
Tetrahedron 2005, 61, 10827.
(a) Pianowski, Z.; Gorska, K.; Oswald, L.; Merten, C. A.; Winssinger, N. J. Am.
Chem. Soc. 2009, 131, 6492; (b) Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007;
7.84 (d, J = 12.0 Hz, 2H), 7.65 (s, 1H), 7.53 (d, J = 12.0 Hz, 2H), 7.0–6.89 (m, 4H),
ꢀ
1
3.88 (s, 1H), 3.83 (s, 1H); IR (KBr)
Compound 1j: mp 205–206 °C (lit. 206.2–208.5 °C);
CDCl ) d: 7.80 (d, J = 9.0 Hz, 2H), 7.65 (s, 1H), 7.54–7.44 (m, 4H), 6.91 (d,
J = 9.0 Hz, 2H), 3.82 (s, 3H); IR (KBr)
Compound 1k: mp 153.1–153.8 °C (lit. 156–157 °C). H NMR (300 MHz,
CDCl ) d: 7.88 (s, 1H), 7.81 (d, J = 9.0 Hz, 2H), 7.50 (d, J = 12.0 Hz, 2H), 7.13 (d,
J = 9.0 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H), 3.82 (s, 2H), 2.32 (s, 3H); IR (KBr) : 3340,
m: 3327, 2955, 1647, 1605 cm .
2
5
1
3
.
.
H NMR (300 MHz,
3
ꢀ
1
(
c) Damkaci, F.; Deshong, P. J. Am. Chem. Soc. 2003, 125, 4408; (d) Gololobov, Y.
m: 3355, 2969, 1655, 1606 cm .
27 1
G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353.
4
(a) Lang, S.; Murphy, J. A. Chem. Soc. Rev. 2006, 35, 146; (b) Ribelin, T.; Katz, C.
E.; English, D. G.; Smith, S.; Manukyan, A. K.; Day, V. W.; Neuenswander, B.;
Poutsma, J. L.; Aube, J. Angew. Chem., Int. Ed. 2008, 47, 6233.
3
m
ꢀ
1
2962, 1652, 1601 cm
.
28
1
5
.
.
(a) Hashimoto, M.; Obora, Y.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2008, 73, 2894;
Compound 1l: mp 134–135 °C (lit. 134–135 °C); H NMR (300 MHz, CDCl
3
) d:
7.70 (d, J = 9.0 Hz, 2H), 7.44–7.39 (m, 3H), 5.96 (s, 1H), 1.46 (s, 9H); C NMR
1
3
(
b) Owston, N. A.; Parker, A. J.; Williams, J. M. J. Org. Lett. 2007, 9, 3599.
6
(a) Nanayakkara, P.; Alper, H. Chem. Commun. 2003, 2384; (b) Martinelli, J. R.;
Clark, T. P.; Watson, D. A.; Munday, R. H.; Buchwald, S. L. Angew. Chem., Int. Ed.
(75.4 MHz, CDCl
3326, 2979, 1636, 1579 cm
Compound 1m: mp 136–137 °C (lit. 137–138 °C); 1H NMR (300 MHz, CDCl
d: 7.81 (d, J = 9.0 Hz, 2H), 7.54–7.44 (m, 2H), 6.0 (s, 1H), 1.47 (s,9H); IR (KBr) m
3
) d: 166.8, 136.0, 131.2, 128.3, 126.7, 51.7, 28.8; IR (KBr)
m
:
ꢀ
1
.
29
2
007, 46, 8460.
Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. J. Mol. Catal. A: Chem.
995, 104, 17.
3
)
:
7
.
.
ꢀ
1
1
3357, 2979, 1636, 1592 cm
Compound 1n: mp 158–159 °C (lit. 159–160 °C); 1H NMR (300 MHz, CDCl
8.24 (d, J = 9.0 Hz, 2H), 7.87 (d, J = 9.0 Hz, 2H), 6.09 (s, 1H), 1.49 (s, 9H); IR (KBr)
.
29
8
(a) Park, J. H.; Kim, S. Y.; Kim, S. M.; Chung, Y. K. Org. Lett. 2007, 9, 2465; (b)
Uenoyama, Y.; Fukuyama, T.; Nobuta, O.; Matsubara, H.; Ryu, I. Angew. Chem.,
Int. Ed. 2005, 44, 1075; (c) Ali, B. E.; Tijani, J. Appl. Organomet. Chem. 2003, 17,
3
) d:
ꢀ
1
m
: 3308, 2969, 1638, 1600 cm .
30
Compound 1o: mp 117–118 (lit. 118–118.7 °C); 1H NMR (300 MHz, CDCl
) d:
3
9
21; (d) Knapton, D. J.; Meyer, T. Y. Org. Lett. 2004, 6, 687.