1
Wilmouth et al.
conditions. The photolysis rates determined with these new data
will not be substantially different from those determined with
the values of JPL-06 or Burkholder et al.,26 but the directness
of the technique and completeness of this study help solidify
the laboratory foundation supporting our understanding of
chlorine-catalyzed ozone loss.
Acknowledgment. We appreciate the role of the SPARC
initiative and workshop (The Role of Halogen Chemistry in
Polar Stratospheric Ozone Depletion) in drawing focus to this
scientific issue and promoting discussion. In particular, we thank
Stan Sander, Jim Burkholder, and Kyle Bayes for helpful
discussions on this work. This research is supported by NASA
grant NNX09AE29G.
Figure 11. Absorption cross sections of ClOOCl at 352 nm (units of
-
20
2
-1
1
0
cm molecule ) from this work compared with selected
4
-7,25,26
previously published values.
The mean value for each study is
References and Notes
shown in blue with stated error limits in red. The mean cross section
from this work is shown assuming the quantum yield is 1.0 (see the
(1) World Meteorological Organization (WMO), Scientific Assessment
of Ozone Depletion: 2006, WMO Global Ozone Research and Monitoring
Project, Report 50, WMO: Geneva, Switzerland, 2007.
4
text). The Pope et al. uncertainty, which is obscured on the scale of
2
5
this figure, is +20/-10%. Huder and DeMore did not report
(
2) Frieler, K.; Rex, M.; Salawitch, R. J.; Canty, T.; Streibel, M.;
uncertainties.
Stimpfle, R. M.; Pfeilsticker, K.; Dorf, M.; Weisenstein, D. K.; Godin-
Beekmann, S. Geophys. Res. Lett. 2006, 33, doi: 10.1029/2005GL025466.
(3) Molina, L. T.; Molina, M. J. J. Phys. Chem. 1987, 91, 433.
(4) Pope, F. D.; Hansen, J. C.; Bayes, K. D.; Friedl, R. R.; Sander,
S. P. J. Phys. Chem. A 2007, 111, 4322.
2
5
factor of 2.3 higher than that of Huder and DeMore, which is
2
7
also the IUPAC recommendation, and a factor of 12 higher
4
6
than that of Pope et al. The recent Chen et al. value at 250 K
and 351 nm is 46% higher than our result. The source of the
discrepancy is not clear, as their mass detection is not suscepti-
ble to the same impurity issues as the absorption studies, but
we do not observe cross sections as high as those found in the
(
5) von Hobe, M.; Stroh, F.; Beckers, H.; Benter, T.; Willner, H. Phys.
Chem. Chem. Phys. 2009, 11, 1571.
6) Chen, H.; Lien, C.; Lin, W.; Lee, Y. T.; Lin, J. J. Science 2009,
24, 781.
7) Sander, S. P.; Friedl, R. R.; Ravishankara, A. R.; Golden, D. M.;
(
3
(
Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Keller-Rudek,
H.; Finlayson-Pitts, B. J.; Wine, P. H.; Huie, R. E.; Orkin, V. L. Chemical
Kinetics and Photochemical Data for use in Atmospheric Studies EValuation
Number 15, JPL Publication 06-02, Jet Propulsion Laboratory: Pasadena,
CA, 2006.
(8) Burkholder, J. B.; Mauldin, R. L.; Yokelson, R. J.; Solomon, S.;
Ravishankara, A. R. J. Phys. Chem. 1993, 97, 7597.
6
five experimental runs of Chen et al. at these conditions.
Ultimately, we find our best cross section agreement at 352 nm
with the JPL-06 recommended value. Our reported value is
slightly higher than JPL-06, but our uncertainty range encom-
passes the recommendation.
(
9) Ibuki, T.; Hiraya, A.; Shobatake, K. J. Chem. Phys. 1989, 90, 6290.
It is worth considering the impact on these comparisons if
the quantum yield of reaction 2a at 352 nm is actually 0.9 instead
of 1.0. Overall, our cross section difference with most of the
other studies is so substantial that any uncertainty regarding
the quantum yield affecting the comparisons is inconsequential.
One change of note is that our absorption cross section would
(
10) Basco, N.; Hunt, J. E. Int. J. Chem. Kinet. 1979, 11, 649.
(11) Trolier, M.; Mauldin, R. L.; Ravishankara, A. R. J. Phys. Chem.
990, 94, 4896.
1
(
12) Anderson, J. G.; Margitan, J. J.; Stedman, D. H. Science 1977,
1
98, 501.
(13) Brune, W. H.; Anderson, J. G.; Chan, K. R. J. Geophys. Res. 1989,
94, 16649.
2
6
(14) Molina, M. J.; Colussi, A. J.; Molina, L. T.; Schindler, R. N.; Tso,
T.-L. Chem. Phys. Lett. 1990, 173, 310.
15) Rao, Y. V.; Venkateswarlu, P. J. Mol. Spectrosc. 1962, 9, 173.
(16) Lee, L. C.; Suto, M.; Tang, K. Y. J. Chem. Phys. 1986, 84, 5277.
be much closer to that of Burkholder et al. than that of JPL-
6, but our value would still lie between the two. While higher,
0
(
the upper bound of our cross section uncertainty would remain
significantly below the lower bound of the uncertainty from the
(
(
(
17) Yu, Y. C.; Setser, D. W. J. Photochem. Photobiol. 1988, 42, 27.
18) Chichinin, A. I. J. Chem. Phys. 2000, 112, 3772.
6
Chen et al. study.
19) Plenge, J.; K u¨ hl, S.; Vogel, B.; M u¨ ller, R.; Stroh, F.; von Hobe,
Our relative agreement at 352 nm with the JPL-06 and
M.; Flesch, R.; R u¨ hl, E. J. Phys. Chem. A 2005, 109, 6730.
20) Stimpfle, R. M.; Wilmouth, D. M.; Salawitch, R. J.; Anderson, J. G.;
J. Geophys. Res. 2004, 109, doi:10.1029/2003JD003811.
21) von Hobe, M.; Grooss, J.-U.; M u¨ ller, R.; Hrechanyy, S.; Winkler,
Burkholder et al.2 ClOOCl cross sections is consistent with
6
(
1
,20,28
ClO/ClOOCl field observations
and with the calculated
(
ClOOCl photolysis rate that is needed to explain observed O
3
U.; Stroh, F. Atmos. Chem. Phys. 2005, 5, 693.
(22) Avallone, L. M.; Toohey, D. W. J. Geophys. Res. 2001, 106, 10411.
29
loss. We find no need for new photolytic or reactive pathways
to bring agreement between models and measurements of
chemical ozone depletion.
(
(
23) Cox, R. A.; Hayman, G. D. Nature 1988, 332, 796.
24) DeMore, W. B.; Tschuikow-Roux, E. J. Phys. Chem. 1990, 94,
5
856.
(
25) Huder, K. J.; DeMore, W. B. J. Phys. Chem. 1995, 99, 3905.
Conclusions
(26) Burkholder, J. B.; Orlando, J. J.; Howard, C. J. J. Phys. Chem.
990, 94, 687.
1
The photodissociation cross sections measured here are
consistent with the widely accepted mechanism for chlorine
removal by the ClOOCl catalytic cycle. The measurements show
that the photolysis rate of ClOOCl is at least as fast as previously
thought. Significantly, the likelihood of a large systematic error
is greatly reduced by the measurement of the primary contami-
(27) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson,
R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Atmos. Chem.
Phys. 2007, 7, 981.
(
28) Wilmouth, D. M.; Stimpfle, R. M.; Anderson, J. G.; Elkins, J. W.;
Hurst, D. F.; Salawitch, R. J.; Lait, L. R. J. Geophys. Res. 2006, 111, doi:
10.1029/2005JD006951.
(
29) von Hobe, M. Science 2007, 318, 1878.
2
nant, Cl , and by a methodical variation in experimental
JP9053204