7146
M. Bera, S. Roy / Tetrahedron Letters 48 (2007) 7144–7146
7. (a) Righi, G.; Franchini, T.; Bonini, C. Tetrahedron Lett.
1998, 39, 2385; (b) Ghorai, M. K.; Das, K.; Kumar, A.;
Ghosh, K. Tetrahedron Lett. 2005, 46, 4103.
8. (a) Prasad, B. A. B.; Sekar, G.; Singh, V. K. Tetrahedron
Lett. 2000, 41, 4677; (b) Li, P.; Forbeck, E. M.; Evans, C.
D.; Joullie, M. M. Org. Lett. 2006, 22, 5105.
9. Aydin, J. K. J.; Wallner, O. A.; Saltanova, I. V.; Szabo, J.
K. Chem. Eur. J. 2005, 11, 5260.
10. (a) Ghorai, M. K.; Ghosh, K. Tetrahedron Lett. 2007, 48,
3191; (b) Ghorai, M. K.; Ghosh, K.; Das, K. Tetrahedron
Lett. 2006, 47, 5399.
11. (a) Ungureanu, I.; Koltz, P.; Mann, A. Angew. Chem., Int.
Ed. 2000, 41, 4615; (b) Loh, T. P.; Hu, Q.-Y.; Ma, L. T. J.
Am. Chem. Soc. 2001, 123, 2450.
12. (a) Stamm, H.; Sommer, A.; Woderer, A.; Wiesert, W.;
Mall, T.; Assithianakis, P. J. Org. Chem. 1985, 50, 4946;
(b) Stamm, H.; Onistschenko, A.; Buchholz, B.; Mall, T.
J. Org. Chem. 1989, 54, 193.
13. Bergmeier, S. C.; Katz, S. J.; Huang, J.; McPherson, H.;
Donoghue, P. J.; Reed, D. D. Tetrahedron Lett. 2004, 45,
5011.
14. Yadav, J. S.; Reddy, B. V. S.; Rao, R. S.; Veerendhar, G.;
Nagaiah, K. Tetrahedron Lett. 2001, 42, 8067.
1. The ring opening of N-tosyl aziridines proved to be
highly regioselective with exclusive attack of the
arene/heteroarene at the benzylic position.
2. The trends in the reactivity of arenes show that for
ring-activated arenes, reactions were complete within
shorter reaction times, and the product yields were
very good. In contrast, benzene and ring-deactivated
arenes reacted more slowly giving rise to the desired
product in poor yields along with unreacted aziridine.
3. The reactions proceeded with greater facility in the
case of furan, and thiophene derivatives as indicated
by shorter reaction times, and consistently good
yields (Table 4). In all cases, the substitution took
place exclusively at the 2-position of the heteroarene.
4. It was further observed that the nature of the substi-
tuent on the aromatic ring of the N-tosyl aziridine
had some effect on the conversion, and the reactivity
followed the trend 1c > 1a > 1b > 1d. In contrast
reaction of an aziridine bearing an alkyl substituent,
for example, N-tosyl-2-hexyl aziridine failed.
15. (a) Choudhury, J.; Podder, S.; Roy, S. J. Am. Chem. Soc.
2005, 127, 6162; (b) Podder, S.; Choudhury, J.; Roy, S. J.
Org. Chem. 2007, 72, 3129; (c) Podder, S.; Choudhury, J.;
Roy, U. K.; Roy, S. J. Org. Chem. 2007, 72, 3100.
16. For arene–Ag(I) complexation: (a) Sharp, D. W. A.;
Sharpe, A. G. J. Chem. Soc., Chem. Commun. 1956,
1855; (b) Hill, A. E. J. Am. Chem. Soc. 1921, 43, 254; (c)
Hall, A. E.; Amma, L. E. J. Chem. Soc., Chem. Commun.
1968, 622; (d) Griffith, H. A. E.; Amma, L. E. J. Am.
Chem. Soc. 1974, 96, 5407; (e) Munakata, M.; Wu, P. L.;
Ning, L. G. Coord. Chem. Rev. 2000, 198, 171; (f)
Linderman, V. S.; Rathore, R.; Kochi, K. J. Inorg. Chem.
2000, 39, 5707.
In summary, we have presented an efficient method for
the preparation of b-aryl ethylamine derivatives from
N-tosyl aziridines and arenes/heteroarenes using cata-
lytic AgPF6. The very mild conditions, clean TLC pro-
files, high regioselectivity and operational simplicity
are expected to make this reaction attractive to chemists.
Efforts are underway to broaden the scope of the aryla-
tion to an asymmetric version.
Acknowledgements
17. For aziridine–Ag(I) complexation: (a) Faure, R.; Gebicki,
K. J. Crystallogr. Spec. Res. 1993, 23, 795, CAN 120:
123473; (b) Teil, B. Z. Naturforsch 1971, 26, 476.
18. General procedure: The procedure given below was fol-
S.R. thanks the DST for financial support. M.B. thanks
the CSIR for a fellowship.
lowed in all cases. All products showed satisfactory 1H, 13
C
Supplementary data
NMR, DEPT, IR and HRMS data, which are given in
Supplementary data. Synthesis of N-[2-(4-Methoxyphe-
Supplementary data associated with this article can be
nyl)-2-phenyl-ethyl]-4-methyl-benzenesulfonamide (2):
A
mixture N-tosyl aziridine 1a (1 mmol, 273 mg), anisole
(2 mmol, 100ll) and AgPF6 (0.02 mmol, 5 mg) in 3 ml of
dry dichloroethane were stirred at room temperature.
Following completion (vide TLC), the reaction mixture
was diluted with water (5 ml) and extracted with dichlo-
roethane (4 · 5 ml). The combined organic layers were
dried over anhydrous sodium sulfate, concentrated in
vacuo and the resulting product was purified by column
chromatography on silica gel (100–200 mesh, ethyl ace-
tate–petroleum ether, 1:10) to afford pure b-aryl ethyla-
mine derivative 2 (305 mg, 80% with respect to 1a). 1H
NMR (400 MHz, CDCl3): d 2.46 (s, 3H), 3.46–3.57 (m,
2H), 3.78 (s, 3H), 4.02 (t, 1H, J = 8 Hz), 4.29 (t, 1H,
J = 6 Hz), 6.82 (d, 2H, J = 8.8 Hz), 7.01 (d, 2H,
J = 8.4 Hz), 7.09 (d, 2H, J = 6.8 Hz), 7.20–7.33 (m, 5H),
7.74 (d, 2H, J = 8.4 Hz); 13C NMR (100 MHz, CDCl3):
21.61, 47.40, 49.70, 55.30, 114.27, 127.09, 127.19, 127.84,
128.88, 128.96, 129.79, 132.63, 136.72, 141.04, 143.58,
158.62; HRMS (ESI) calcd for C22H23NO3S
[M+Na]+ = 404.1296, found 404.1293. IR (KBr): 3283,
References and notes
1. (a) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599;
(b) McCoull, W.; Davis, F. A. Synthesis 2000, 1347.
2. Hu, X. E. Tetrahedron 2004, 60, 2701, and references cited
therein.
3. (a) Kozikowski, A.; Ishida, H.; Isobe, K. J. Org. Chem.
1979, 44, 2788; (b) Osborn, H. M. I.; Sweeney, J. D.;
Howson, B. Synlett 1993, 676.
4. Wu, J.; Hou, X.-L.; Dai, L.-X. J. Org. Chem. 2000, 65,
1344.
5. Ibuka, T.; Nakai, K.; Habashita, H.; Fujii, N.; Garrido,
F.; Mann, A.; Chounan, Y.; Yamamoto, Y. Tetrahedron
Lett. 1993, 34, 7421.
6. (a) Meguro, M.; Asao, N.; Yamamoto, Y. Tetrahedron
Lett. 1994, 35, 7395; (b) Sekar, G.; Singh, V. K. J. Org.
Chem. 1999, 64, 2537.
2932, 1512, 1324, 1153, 1092, 820 cmÀ1
.