Journal of the American Chemical Society
Page 4 of 5
redesign substrates in order to enhance the generality of Fe/2OG
enzymes as potential biocatalysts.
positioning controls the partition between halogenation and hydroxylation
in the aliphatic halogenase, SyrB2. Proc. Natl. Acad. Sci. U.S.A. 2009, 106
42), 17723-8.
2. Bollinger, J. M., Jr.; Chang, W.-c.; Matthews, M. L.; Martinie,
R. J.; Boal, A. K.; Krebs, C., Mechanisms of 2-Oxoglutarate-Dependent
Oxygenases: The Hydroxylation Paradigm and Beyond. In 2-Oxoglutarate-
Dependent Oxygenases, Hausinger, R. P.; Schofield, C. J., Eds. Royal
Society of Chemistry: London, 2015; pp 95-122.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
1
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website.
Detailed experimental methods and Figures S1-22.
13.
Price, J. C.; Barr, E. W.; Tirupati, B.; Bollinger, J. M., Jr.; Krebs,
C., The first direct characterization of a high-valent iron intermediate in the
reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin
FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from
Escherichia coli. Biochemistry 2003, 42 (24), 7497-508.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
AUTHOR INFORMATION
14.
Qi, J.; Wan, D.; Ma, H.; Liu, Y.; Gong, R.; Qu, X.; Sun, Y.;
Deng, Z.; Chen, W., Deciphering Carbamoylpolyoxamic Acid Biosynthesis
Reveals Unusual Acetylation Cycle Associated with Tandem Reduction
and Sequential Hydroxylation. Cell. Chem. Biol. 2016, 23 (8), 935-44.
*
*
15.
Shi, F.; Niu, T.; Fang, H., 4-Hydroxyisoleucine production of
recombinant Corynebacterium glutamicum ssp. lactofermentum under
optimal corn steep liquor limitation. Appl. Microbiol. Biotechnol. 2015, 99
(9), 3851-63.
Author Contributions
1
6. Hibi, M.; Kawashima, T.; Sokolov, P. M.; Smirnov, S. V.;
The manuscript was written through contributions of all authors.
All authors have given approval to the final version of the
manuscript.
Kodera, T.; Sugiyama, M.; Shimizu, S.; Yokozeki, K.; Ogawa, J., L-leucine
5-hydroxylase of Nostoc punctiforme is a novel type of Fe(II)/alpha-
ketoglutarate-dependent dioxygenase that is useful as a biocatalyst. Appl.
Microbiol. Biotechnol. 2013, 97 (6), 2467-72.
17.
Ogawa, J.; Kodera, T.; Smirnov, S. V.; Hibi, M.; Samsonova, N.
Notes
N.; Koyama, R.; Yamanaka, H.; Mano, J.; Kawashima, T.; Yokozeki, K.;
Shimizu, S., A novel L-isoleucine metabolism in Bacillus thuringiensis
generating (2S,3R,4S)-4-hydroxyisoleucine, a potential insulinotropic and
anti-obesity amino acid. Appl. Microbiol. Biotechnol. 2011, 89 (6), 1929-
The authors declare no competing financial interests.
ACKNOWLEDGMENT
3
1
8.
8.
This work was supported by North Carolina State University and
Carnegie Mellon University. M.M. acknowledges Undergraduate
Research Summer Grant at North Carolina State University.
Hibi, M.; Kawashima, T.; Kodera, T.; Smirnov, S. V.; Sokolov,
P. M.; Sugiyama, M.; Shimizu, S.; Yokozeki, K.; Ogawa, J.,
Characterization of Bacillus thuringiensis L-isoleucine dioxygenase for
production of useful amino acids. Appl. Environ. Microbiol. 2011, 77 (19),
6
1
926-30.
9.
Price, J. C.; Barr, E. W.; Glass, T. E.; Krebs, C.; Bollinger, J.
REFERENCES
M., Jr., Evidence for hydrogen abstraction from C1 of taurine by the high-
spin Fe(IV) intermediate detected during oxygen activation by
taurine:alpha-ketoglutarate dioxygenase (TauD). J. Am. Chem. Soc. 2003,
125 (43), 13008-9.
1
.
Islam, M. S.; Leissing, T. M.; Chowdhury, R.; Hopkinson, R. J.;
Schofield, C. J., 2-Oxoglutarate-Dependent Oxygenases. Annu. Rev.
Biochem. 2018, 87, 585-620.
2
.
Gao, S. S.; Naowarojna, N.; Cheng, R.; Liu, X.; Liu, P., Recent
20.
Pavel, E. G.; Zhou, J.; Busby, R. W.; Gunsior, M.; Townsend,
examples of alpha-ketoglutarate-dependent mononuclear non-haem iron
enzymes in natural product biosyntheses. Nat. Prod. Rep. 2018, 35, 792-
C. A.; Solomon, E. I., Circular dichroism and magnetic circular dichroism
spectroscopic studies of the non-heme ferrous active site in clavaminate
synthase and its interaction with alpha-ketoglutarate cosubstrate. J. Am.
Chem. Soc. 1998, 120 (4), 743-753.
8
3
37.
.
Martinez, S.; Hausinger, R. P., Catalytic Mechanisms of Fe(II)-
and 2-Oxoglutarate-dependent Oxygenases. J. Biol. Chem. 2015, 290 (34),
21.
Ryle, M. J.; Padmakumar, R.; Hausinger, R. P., Stopped-flow
2
4
0702-11.
.
kinetic analysis of Escherichia coli taurine/alpha-ketoglutarate
dioxygenase: interactions with alpha-ketoglutarate, taurine, and oxygen.
Biochemistry 1999, 38 (46), 15278-86.
Hausinger, R. P., Biochemical Diversity of 2-Oxoglutarate-
Dependent Oxygenases. In 2-Oxoglutarate-Dependent Oxygenases,
Hausinger, R. P.; Schofield, C. J., Eds. Royal Society of Chemistry:
London, 2015; pp 1-58.
22.
Bollinger, J. M., Jr.; Krebs, C., Stalking intermediates in oxygen
activation by iron enzymes: Motivation and method. J. Inorg. Biochem.
2006, 100 (4), 586-605.
5
.
Matthews, M. L.; Chang, W.-c.; Layne, A. P.; Miles, L. A.;
Krebs, C.; Bollinger, J. M., Jr., Direct nitration and azidation of aliphatic
carbons by an iron-dependent halogenase. Nat. Chem. Biol. 2014, 10 (3),
209-15.
23.
Matthews, M. L.; Krest, C. M.; Barr, E. W.; Vaillancourt, F. H.;
Walsh, C. T.; Green, M. T.; Krebs, C.; Bollinger, J. M., Substrate-triggered
formation and remarkable stability of the C-H bond-cleaving chloroferryl
intermediate in the aliphatic halogenase, SyrB2. Biochemistry 2009, 48
(20), 4331-43.
6
.
Mitchell, A. J.; Dunham, N. P.; Bergman, J. A.; Wang, B.; Zhu,
Q.; Chang, W.-c.; Liu, X.; Boal, A. K., Structure-Guided Reprogramming
of Hydroxylase To Halogenate Its Small Molecule Substrate.
Biochemistry 2017, 56 (3), 441-4.
Chen, K.; Huang, X.; Kan, S. B. J.; Zhang, R. K.; Arnold, F. H.,
Enzymatic construction of highly strained carbocycles. Science 2018, 360
6384), 71-5.
8. Brandenberg, O. F.; Fasan, R.; Arnold, F. H., Exploiting and
a
24.
Lewis, R. D.; Garcia-Borras, M.; Chalkley, M. J.; Buller, A. R.;
Houk, K. N.; Kan, S. B. J.; Arnold, F. H., Catalytic iron-carbene
intermediate revealed in a cytochrome c carbene transferase. Proc. Natl.
Acad. Sci. U.S.A. 2018, 115, 7308-13.
7
.
(
25.
Vila, M. A.; Pazos, M.; Iglesias, C.; Veiga, N.; Seoane, G.;
Carrera, I., Toluene Dioxygenase-Catalysed Oxidation of Benzyl Azide to
Benzonitrile: Mechanistic Insights for an Unprecedented Enzymatic
Transformation. Chembiochem 2016, 17 (4), 291-5.
engineering hemoproteins for abiological carbene and nitrene transfer
reactions. Curr. Opin. Biotechnol. 2017, 47, 102-11.
9
.
Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H., Olefin
26.
Nomura, J.; Hashimoto, H.; Ohta, T.; Hashimoto, Y.; Wada, K.;
cyclopropanation via carbene transfer catalyzed by engineered cytochrome
P450 enzymes. Science 2013, 339 (6117), 307-10.
Naruta, Y.; Oinuma, K.; Kobayashi, M., Crystal structure of aldoxime
dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-
bond synthesis. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (8), 2810-5.
1
0.
Kan, S. B.; Lewis, R. D.; Chen, K.; Arnold, F. H., Directed
evolution of cytochrome c for carbon-silicon bond formation: Bringing
silicon to life. Science 2016, 354 (6315), 1048-1051.
27.
Sawai, H.; Sugimoto, H.; Kato, Y.; Asano, Y.; Shiro, Y.; Aono,
S., X-ray crystal structure of michaelis complex of aldoxime dehydratase.
J. Biol. Chem. 2009, 284 (46), 32089-96.
11.
Matthews, M. L.; Neumann, C. S.; Miles, L. A.; Grove, T. L.;
Booker, S. J.; Krebs, C.; Walsh, C. T.; Bollinger, J. M., Jr., Substrate
ACS Paragon Plus Environment