Communication
5
ChemComm
For selected examples of metal-catalyzed oxidative annulations of 12 We currently do not have a definitive explanation for this result,
alkenes that produce heterocycles, see: (a) M. Miura, T. Tsuda,
T. Satoh and M. Nomura, Chem. Lett., 1997, 1103–1104; (b) M. Miura,
though we have observed that the substrates are prone to decom-
position if left exposed to atmospheric oxygen.
T. Tsuda, T. Satoh, S. Pivsa-Art and M. Nomura, J. Org. Chem., 1998, 63, 13 In the work of Glorius and co-workers (see ref. 8), non- or weakly-
5
211–5215; (c) K. Ueura, T. Satoh and M. Miura, Org. Lett., 2007, 9,
activated 1,3-dienes gave products different to those obtained from
highly activated 1,3-dienes, as a result of over-oxidation.
1407–1409; (d) Y. Lu, D.-H. Wang, K. M. Engle and J.-Q. Yu, J. Am. Chem.
Soc., 2010, 132, 5916–5921; (e) S. Reddy Chidipudi, M. D. Wieczysty, 14 Although iridium-catalyzed annulations of 1,3-dienes with cyclic
I. Khan and H. W. Lam, Org. Lett., 2013, 15, 570–573; ( f ) J. D. Dooley,
S. Reddy Chidipudi and H. W. Lam, J. Am. Chem. Soc., 2013, 135,
ketimines (see ref. 9) occur with non-activated and highly activated
1,3-dienes, the mechanism of these reactions appears to be distinct
from related processes (see ref. 7 and 8, and the reactions described
herein) in that the initially formed iridacycle reacts with the 1,3-diene
in an oxidative cyclization rather than a migratory insertion.
10829–10836; (g) C. Suzuki, K. Morimoto, K. Hirano, T. Satoh and
M. Miura, Adv. Synth. Catal., 2014, 356, 1521–1526.
For selected examples of metal-catalyzed oxidative annulations that
6
produce carbocycles, see ref. 5f and: (a) N. Umeda, H. Tsurugi, 15 Although a highly activated 4-nitrophenyl-substituted 1,3-diene was
T. Satoh and M. Miura, Angew. Chem., Int. Ed., 2008, 47, 4019–4022;
b) Y.-T. Wu, K.-H. Huang, C.-C. Shin and T.-C. Wu, Chem. – Eur. J.,
008, 14, 6697–6703; (c) Z. Shi, S. Ding, Y. Cui and N. Jiao, Angew.
Chem., Int. Ed., 2009, 48, 7895–7898; (d) S. Reddy Chidipudi, I. Khan
and H. W. Lam, Angew. Chem., Int. Ed., 2012, 51, 12115–12119;
unsuitable in these reactions (none of 3p could be isolated), reac-
tions with a 2-nitrophenyl-substituted 1,3-diene, which might be
expected to be electronically similar, were successful (3b and 3o).
Presumably, the 2-nitrophenyl group is twisted out of conjugation
with the 1,3-diene to minimize unfavorable steric interactions with
the 2-nitro group, thus reducing its electron-withdrawing ability.
(
2
(
e) X. Tan, B. Liu, X. Li, B. Li, S. Xu, H. Song and B. Wang, J. Am.
Chem. Soc., 2012, 134, 16163–16166; ( f ) L. Dong, C.-H. Qu, 16 Although nucleophilic addition of the 2-aryl cyclic 1,3-diketone to
J.-R. Huang, W. Zhang, Q.-R. Zhang and J.-G. Deng, Chem. – Eur. J.,
013, 19, 16537–16540; (g) J. Nan, Z. Zuo, L. Luo, L. Bai, H. Zheng,
Y. Yuan, J. Liu, X. Luan and Y. Wang, J. Am. Chem. Soc., 2013, 135,
highly activated 1,3-dienes might be cited as a possible explanation,
Michael acceptors such as acrylate esters react smoothly with 2-aryl
cyclic 1,3-diketones in related oxidative annulations. See ref. 5e.
2
1
7306–17309; (h) V. P. Mehta, J.-A. Garc ´ı a-L ´o pez and M. F. Greaney, 17 The structures of products 3h, 3j, 5a, and 7aa were confirmed by
Angew. Chem., Int. Ed., 2014, 53, 1529–1533; (i) M. V. Pham and X-ray crystallography. See the ESI†.
N. Cramer, Angew. Chem., Int. Ed., 2014, 53, 3484–3487; ( j) S. Kujawa, 18 Spiroindanes 3va and 3vb were accompanied by additional insepar-
D. Best, D. J. Burns and H. W. Lam, Chem. – Eur. J., 2014, 20, 8599–8602;
(
k) A. Seoane, N. Casanova, N. Qui n˜ ones, J. L. Mascare n˜ as and M. Gul ´ı as,
able, unidentified impurities, and therefore the yield was calculated
by H NMR analysis using an internal standard.
1
J. Am. Chem. Soc., 2014, 136, 7607–7610; (l) M.-B. Zhou, R. Pi, M. Hu, 19 (a) J. A. Keith, D. C. Behenna, J. T. Mohr, S. Ma, S. C. Marinescu,
Y. Yang, R.-J. Song, Y. Xia and J.-H. Li, Angew. Chem., Int. Ed., 2014, 53,
1338–11341.
C. E. Houlden, C. D. Bailey, J. G. Ford, M. R. Gagn ´e , G. C. Lloyd-Jones
and K. I. Booker-Milburn, J. Am. Chem. Soc., 2008, 130, 10066–10067.
D. Zhao, F. Lied and F. Glorius, Chem. Sci., 2014, 5, 2869–2873.
(a) T. Nishimura, Y. Ebe and T. Hayashi, J. Am. Chem. Soc., 2013, 135,
J. Oxgaard, B. M. Stoltz and W. A. Goddard, J. Am. Chem. Soc., 2007, 129,
11876–11877; (b) J. A. Keith, D. C. Behenna, N. Sherden, J. T. Mohr, S. Ma,
S. C. Marinescu, R. J. Nielsen, J. Oxgaard, B. M. Stoltz and W. A. Goddard,
J. Am. Chem. Soc., 2012, 134, 19050–19060.
1
7
0
8
9
20 For other, selected examples of papers discussing 3,3 -reductive
elimination, see: (a) M. M ´e ndez, J. M. Cuerva, E. G o´ mez-Bengoa,
D. J. C ´a rdenas and A. M. Echavarren, Chem. – Eur. J., 2002, 8,
3620–3628; (b) P. Zhang and J. P. Morken, J. Am. Chem. Soc., 2009,
131, 12550–12551; (c) L. A. Brozek, M. J. Ardolino and J. P. Morken,
J. Am. Chem. Soc., 2011, 133, 16778–16781.
2
092–2095; (b) T. Nishimura, M. Nagamoto, Y. Ebe and T. Hayashi,
Chem. Sci., 2013, 4, 4499–4504.
1
0 (a) Y. Chen, Y. Luo, J. Ju, E. Wendt-Pienkowski, S. R. Rajski and
B. Shen, J. Nat. Prod., 2008, 71, 431–437; (b) L. D. Fader, S. Landry,
S. Morin, S. H. Kawai, Y. Bousquet, O. Hucke, N. Goudreau, 21 For reviews covering the palladium-catalyzed allylic alkylation of enolates
C. T. Lemke, P. Bonneau, S. Titolo, S. Mason and B. Simoneau,
Bioorg. Med. Chem. Lett., 2013, 23, 3396–3400.
1 (a) C. J. O’Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass,
A. Lough, A. C. Hopkinson and M. G. Organ, Chem. – Eur. J., 2006, 12,
and their derivatives, see: (a) S. Oliver and P. A. Evans, Synthesis, 2013,
3179–3198; (b) A. Y. Hong and B. M. Stoltz, Eur. J. Org. Chem., 2013,
2745–2759; (c) Z. Lu and S. Ma, Angew. Chem., Int. Ed., 2008, 47, 258–297;
(d) J. T. Mohr and B. M. Stoltz, Chem. – Asian J., 2007, 2, 1476–1491;
(e) M. Braun and T. Meier, Synlett, 2006, 661–676; ( f ) B. M. Trost and
M. L. Crawley, Chem. Rev., 2003, 103, 2921–2944.
1
4
743–4748; (b) C. Valente, S. Çalimsiz, K. H. Hoi, D. Mallik, M. Sayah
and M. G. Organ, Angew. Chem., Int. Ed., 2012, 51, 3314–3332.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015