10.1002/anie.202108635
Angewandte Chemie International Edition
RESEARCH ARTICLE
[16] X. Duan, J. Xu, Z. Wei, J. Ma, S. Guo, S. Wang, H. Liu, S. Dou, Adv.
Mater. 2017, 29, 2467.
Conclusion
[17] Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z.
Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T.-K.
Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen, E. H. Sargent, Nat.
Chem. 2018, 10, 974-980.
In summary, a series of defective CuO supported atomically
dispersed Sn catalysts have been successfully prepared and
evaluated for CO2 electroreduction. Sn1/Vo-CuO-90 exhibited a
high methanol FE of 88.6% with a current density of 67.0 mA
cm-2 and remarkable stability. The outstanding methanol
selectivity originated from the cooperative effect of Sn1/Vo Lewis
acid-base pair and CuO support. The detailed study indicated
that Sn1/Vo-CuO-90 can promote CO2 activation and reduce the
energy barrier of *COOH dissociation to form *CO. The Cu
species in support preferred to adsorb *CO for further reduction,
resulting in high reactivity and selectivity for methanol production.
This work not only designs an efficient electrocatalyst but also
provides an in-depth understanding of the catalytic active
centers for CO2 reduction to methanol. We believe that it may
inspire the design of more active and stable electrocatalysts.
[18] Y. J. Sa, C. W. Lee, S. Y. Lee, J. Na, U. Lee, Y. J. Hwang, Chem. Soc.
Rev. 2020, 49, 6632-6665.
[19] H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, B. R.
Cuenya, J. Am. Chem. Soc. 2014, 136, 16473-16476.
[20] T. N. Nguyen, M. Salehi, Q. V. Le, A. Seifitokaldani, C. T. Dinh, ACS
Catal. 2020, 10, 10068-10095.
[21] Z. Li, S. Ji, Y. Liu, X. Cao, S. Tian, Y. Chen, Z. Niu, Y. Li, Chem. Rev.
2020, 120, 623-682.
[22] D. Liu, Q. He, S. Ding, L. Song, Adv. Energy Mater. 2020, 10, 2001482.
[23] D. Karapinar, N. T. Huan, N. Ranjbar Sahraie, J. Li, D. Wakerley, N.
Touati, S. Zanna, D. Taverna, L. H. Galvão Tizei, A. Zitolo, F. Jaouen,
V. Mougel, M. Fontecave, Angew. Chem. Int. Ed. 2019, 58, 15098-
15103; Angew. Chem. 2019, 131, 15242-15247.
[24] W. Guo, X. Tan, J. Bi, L. Xu, D. Yang, C. Chen, Q. Zhu, J. Ma, A. Tayal,
J. Ma, Y. Huang, X. Sun, S. Liu, B. Han, J. Am. Chem. Soc., 2021, 143,
6877-6885.
Acknowledgements
[25] M. Li, H. Wang, W. Luo, P. C. Sherrell, J. Chen, J. Yang, Adv. Mater.
2020, 32, 2001848.
[26] F. Yang, P. Song, X. Liu, B. Mei, W. Xing, Z. Jiang, L. Gu, W. Xu,
Angew. Chem. Int. Ed. 2018, 57, 12303-12307; Angew. Chem. 2018,
130, 12483-12487.
The work was supported financially by National Key Research
and Development Program of China (2020YFA0710203,
2017YFA0403101), the National Natural Science Foundation of
China (22002172, 21890761) and Chinese Academy of
Sciences (QYZDY-SSW-SLH013). The X-ray absorption
spectroscopy measurements were performed at Beamline
BL14W1 at Shanghai Synchrotron Radiation Facility (SSRF) and
Beamline 1W1B at Beijing Synchrotron Radiation Facility
(BSRF).
[27] H. Zhang, J. Li, S. Xi, Y. Du, X. Hai, J. Wang, H. Xu, G. Wu, J. Zhang, J.
Lu, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 14871-14876; Angew.
Chem. 2019, 131, 15013-15018.
[28] Y. Wang, H. Su, Y. He, L. Li, S. Zhu, H. Shen, P. Xie, X. Fu, G. Zhou, C.
Feng, D. Zhao, F. Xiao, X. Zhu, Y. Zeng, M. Shao, S. Chen, G. Wu, J.
Zeng, C. Wang, Chem. Rev. 2020, 120, 12217-12314.
[29] H. Shang, T. Wang, J. Pei, Z. Jiang, D. Zhou, Y. Wang, H. Li, J. Dong,
Z. Zhuang, W. Chen, D. Wang, J. Zhang, Y. Li, Angew. Chem. Int. Ed.
2020, 59, 22465-22469; Angew. Chem. 2020, 132, 22651-22655.
[30] Y.-W. Choi, F. Scholten, I. Sinev, B. Roldan Cuenya, J. Am. Chem. Soc.
2019, 141, 5261-5266.
Keywords: carbon dioxide; electrocatalysis; ionic liquid;
methanol; green chemistry
[31] W. Guo, X. Sun, C. Chen, D. Yang, L. Lu, Y. Yang, B. Han, Green
Chem. 2019, 21, 503-508.
[1]
[2]
[3]
[4]
M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114, 1709-
1742.
[32] X. Zu, X. Li, W. Liu, Y. Sun, J. Xu, T. Yao, W. Yan, S. Gao, C. Wang, S.
Wei, Y. Xie, Adv. Mater. 2019, 31, 1808135.
L. Sun, V. Reddu, A. C. Fisher, X. Wang, Energy Environ. Sci. 2020, 13,
374-403.
[33] Z. Geng, X. Kong, W. Chen, H. Su, Y. Liu, F. Cai, G. Wang, J. Zeng,
Angew. Chem. Int. Ed. 2018, 57, 6054-6059; Angew. Chem. 2018, 130,
6162-6167.
M. B. Ross, P. De Luna, Y. Li, C.-T. Dinh, D. Kim, P. Yang, E. H.
Sargent, Nat. Catal. 2019, 2, 648-658.
[34] T. Möller, F. Scholten, T. N. Thanh, I. Sinev, J. Timoshenko, X. Wang,
Z. Jovanov, M. Gliech, B. Roldan Cuenya, A. S. Varela, P. Strasser,
Angew. Chem. Int. Ed. 2020, 59, 17974-17983; Angew.Chem. 2020,
132, 18130-18139.
G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L.
Dai, Chem. Soc. Rev. 2021, 50, 4993-5061.
[5]
[6]
[7]
F. Pan, Y. Yang, Energy Environ. Sci. 2020, 13, 2275-2309.
T. Li, C. Yang, J.-L. Luo, G. Zheng, ACS Catal. 2019, 9, 10440-10447.
J. Qu, X. Zhang, Y. Wang, C. Xie, Electrochim. Acta 2005, 50, 3576-
3580.
[35] Q. Lei, H. Zhu, K. Song, N. Wei, L. Liu, D. Zhang, J. Yin, X. Dong, K.
Yao, N. Wang, X. Li, B. Davaasuren, J. Wang, Y. Han, J. Am. Chem.
Soc. 2020, 142, 4213-4222.
[8]
[9]
W. Zhang, Q. Qin, L. Dai, R. Qin, X. Zhao, X. Chen, D. Ou, J. Chen, T.
T. Chuong, B. Wu, N. Zheng, Angew. Chem. Int. Ed. 2018, 57, 9475-
9479; Angew. Chem. 2018, 130, 9619-9623.
[36] T. Kim, G. T. R. Palmore, Nat. Commun. 2020, 11, 3622.
[37] X. Bai, W. Chen, C. Zhao, S. Li, Y. Song, R. Ge, W. Wei, Y. Sun,
Angew. Chem. Int. Ed. 2017, 56, 12219-12223; Angew. Chem. 2017,
129, 12387-12391.
X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, Z. Zhang, B. Han, Angew.
Chem. Int. Ed. 2016, 55, 6771-6775; Angew. Chem. 2016, 128, 6883-
6887.
[38] F. Franco, C. Rettenmaier, H. S. Jeon, B. Roldan Cuenya, Chem. Soc.
Rev. 2020, 49, 6884-6946.
[10] L. Lu, X. Sun, J. Ma, D. Yang, H. Wu, B. Zhang, J. Zhang, B. Han,
Angew. Chem. Int. Ed. 2018, 57, 14149-14153; Angew. Chem. 2018,
130, 14345-14349.
[39] Z. Tan, T. Peng, X. Tan, W. Wang, X. Wang, Z. Yang, H. Ning, Q. Zhao,
M. Wu, ChemElectroChem 2020, 7, 2020-2025.
[40] S.-I. In, D. D. Vaughn II, R. E. Schaak, Angew. Chem. Int. Ed. 2012, 51,
3915-3918; Angew. Chem. 2012, 124, 3981-3984.
[11] D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu, B.
Han, Nat. Commun. 2019, 10, 677.
[41] K. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao, N. Ta, R. Si, G. Wang, X. Bao,
Angew. Chem. Int. Ed. 2020, 59, 4814-4821; Angew. Chem. 2020, 132,
4844-4851.
[12] H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu, C. He, J. Am.
Chem. Soc. 2019, 141, 12717-12723.
[13] Y. Wu, Z. Jiang, X. Lu, Y. Liang, H. Wang, Nature 2019, 575, 639-642.
[14] A. Roy, H. S. Jadhav, J. Gil Seo, Electroanalysis 2021, 33, 705-712.
[15] E. Boutin, M. Wang, J. C. Lin, M. Mesnage, D. Mendoza, B. Lassalle-
Kaiser, C. Hahn, T. F. Jaramillo, M. Robert, Angew. Chem. Int. Ed.
2019, 58, 16172-16176; Angew. Chem. 2019, 131, 16318-16322.
[42] R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu, B. Zhang, ACS Catal. 2020,
10, 3533-3540.
[43] X. Ye, C. Yang, X. Pan, J. Ma, Y. Zhang, Y. Ren, X. Liu, L. Li, Y. Huang,
J. Am. Chem. Soc. 2020, 142, 19001-19005.
8
This article is protected by copyright. All rights reserved.