808
Z.H. Li et al. / Electrochimica Acta 56 (2010) 804–809
SPE contained 1.0 wt% of the MIm3S, it had a room temperature
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
ionic conductivity of 1.57 × 10−3 S cm−1 and a lithium ions trans-
ference number up to 0.36. At this amount, the SPE possessed
the minimum value of the apparent activation energy for ions
transportation, 30.9 kJ mol−1 and displayed an electrochemical
stability in the potential range of 0.49–5.36 V (vs. Li/Li+). The results
of charge–discharge measurements of the Li4Ti5O12/SPE/LiCoO2
cell suggest a potential application of this kind of SPE in LIBs.
0.5 mA cm (0.5C)
0.2 mA cm (0.2C)
0.1 mA cm (0.1C)
Acknowledgements
Financial support from the Natural Science Fund from Hunan
Province (09JJ5008), the Open Fund from State Key Laboratory
of Chemical Engineering in East China University of Science and
Technology (SKL-ChE-08C06), and the Doctoral Starting Fund from
Xiangtan University (05QDZ18) is greatly appreciated. We also
thank Ms. M.N. Liu for her help in the DSC and TG measurements.
0
10
20
30
40
50
60
70
80
90
100
Specific capacity / mAh g-1
Fig. 7. Galvanostatic curves of the Li4Ti5O12/SPE/LiCoO2 cell at various current den-
sities of 0.1, 0.2 and 0.5 mA cm−2 at room temperature. The used solid polymer
(Insert: cycle performance of the test cell at 0.1 ◦C).
References
and ␥-butyl olactone [56] into the imidazolium-based electrolyte.
In addition, the lithium ion batteries that use the anode materi-
formance.
[1] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 8 (2009)
621.
[2] A. Lewandowski, A. Swiderska-Mocek, J. Power Sources 194 (2009) 601.
[3] I. Ste˛pniak, E. Andrzejewska, Electrochim. Acta 54 (2009) 5660.
[4] B. Scrosati, J. Garche, J. Power Sources 195 (2010) 2419.
[5] K.S. Liao, T.E. Sutto, E. Andreoli, P. Ajayan, K.A. McGrady, S.A. Curran, J. Power
Sources 195 (2010) 867.
[6] A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagacé, A. Vijh, K. Zaghib, J.
Power Sources 195 (2010) 845.
´
Some persons have reported that the addition of lithium salt
would make the cathodic limit of EMI+ ions shift more negatively
[59–61] and the polymer electrolyte containing EMI+ ions showed
film on the surface of electrode prevents EMI+ ions from contacting
lithium electrode. As a result, EMI+ ions might not be reduced on the
surface of lithium electrode and thus the electrochemical stability
of SPE is improved.
[7] M. Egashira, H. Todo, N. Yoshimoto, M. Morita, J. Power Sources 178 (2008) 735.
[8] Z.L. Tang, L. Qi, G.T. Gao, Solid State Ionics 180 (2009) 226.
[9] C. Sirisopanaporn, A. Fernicola, B. Scrosati, J. Power Sources 186 (2009) 490.
[10] A.L. Pont, R. Marcilla, I.D. Meatza, H. Grande, D. Mecerreyes, J. Power Sources
188 (2009) 558.
[11] J. Kagimoto, N. Nakamura, T. Kato, H. Ohno, Chem. Commun. 17 (2009) 2405.
[12] C. Tiyapiboonchaiya, J.M. Pringle, J. Sun, N. Byrne, P.C. Howlett, D.R. MacFarlane,
M. Forsyth, Nat. Mater. 3 (2004) 29.
[13] M.A.B.H. Susan, T. Kaneko, A. Noda, M. Watanabe, J. Am. Chem. Soc. 127 (2005)
4976.
[14] A. Guerfi, M. Dontigny, Y. Kobayashi, A. Vijh, K. Zaghib, J. Solid State Elec-
trochem. 13 (2009) 1003.
Fig.
7
shows
the
galvanostatic
curves
of
the
Li4Ti5O12/SPE/LiCoO2 cell at various current densities at room
temperature and its cycling performance (inset). The SPE con-
taining 1 wt% of the MIm3S was used as the separator of the
Li4Ti5O12/SPE/LiCoO2 cell. It reveals that the test cell delivers
the capacities of 78, 65, and 57 mAh g−1 (based on the mass of
[15] H. Ye, J. Huang, J.J. Xu, A. Khalfan, S.G. Greenbaum, J. Electrochem. Soc. 154
(2007) A1048.
[16] M.J. Earle, J.M.S.S. Esperanca, A. Gilea, J.N.L. Canongia, L.P.N. Rebelo, J.W. Magee,
K.R. Seddon, J.A. Widegren, Nature 439 (2006) 831.
[17] Y.P. Wang, X.H. Gao, J.C. Chen, Z.W. Li, C.L. Li, S.C. Zhang, J. Appl. Polym. Sci. 113
(2009) 2492.
[18] H. Nakajima, H. Ohno, Polymer 46 (2005) 11499.
[19] J.K. Kim, J. Manuel, G.S. Chauhan, J.H. Ahn, H.S. Ryu, Electrochim. Acta 55 (2010)
1366.
[20] H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda, Y. Aihara, J. Electrochem. Soc.
150 (2003) A695.
[21] Y. Tominaga, M. Morita, S. Asai, M. Sumita, e-J Soft Mater. 1 (2005) 14.
[22] Z.H. Li, J. Jiang, G.T. Lei, D.S. Gao, Polym. Adv. Technol. 17 (2006) 604.
[23] T.E. Sutto, J. Electrochem. Soc. 154 (2007) 101.
[24] S.-Y. Lee, H.H. Yong, Y.J. Lee, S.K. Kim, S. Ahn, J. Phys. Chem. B 109 (2005) 13663.
[25] W. Ogihara, S. Washiro, H. Nakajima, H. Ohno, Electrochim. Acta 51 (2006) 2614.
[26] A. Narita, W. Shibayama, K. Sakamoto, T. Mizumo, N. Matsumi, H. Ohno, Chem.
Commun. 18 (2006) 1926.
[27] J. Sun, D.R. MacFarlane, N. Byrne, M. Forsyth, Electrochim. Acta 51 (2006) 4033.
[28] N. Byrne, P.C. Howlett, D.R. MacFarlane, M. Forsyth, Adv. Mater. 17 (2005) 2497.
[29] N. Byrne, P.C. Howlett, D.R. MacFarlane, M.E. Smith, A. Howes, A.F. Hollenkamp,
T. Bastow, P. Hale, M. Forsyth, J. Power Sources 184 (2008) 288.
[30] M. Yoshizawa, M. Hirao, K. Ito-Akita, H. Ohno, J. Mater. Chem. 11 (2001) 1057.
[31] T. Wiktor, J.W. Marek, J. Phys. Chem. A 107 (2003) 7827.
[32] N. Nanbu, Y. Sasaki, F. Kitamura, Electrochem. Commun. 5 (2003) 383.
[33] W.N. Richard, P.W. Faguy, S.C. Weibel, J. Eelectroanal. Chem. 448 (1998) 237.
[34] D. Stoilova, H.D. Lutz, J. Mol. Struct. 606 (2002) 267.
[35] J.A. Collado, I. Tunon, E. Silla, J. Phys. Chem. A 104 (2000) 2120.
[36] P.G. Bruce, C.A. Vincent, J. Electroanal. Chem. 225 (1987) 1.
[37] S. Kim, S.J. Park, Electrochim. Acta 54 (2009) 3775.
[38] H. Cheng, C.B. Zhu, B. Huang, M. Lu, Y. Yang, Electrochim. Acta 52 (2007) 5789.
[39] T. Mizumo, T. Watanabe, N. Matsumi, H. Ohno, Polym. Adv. Technol. 19 (2008)
1445.
[40] S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, M. Fagnoni, S. Protti, C.
Gerbaldi, A. Spinella, J. Power Sources 195 (2010) 559.
Li4Ti5O12) at the current densities of 0.1, 0.2 and 0.5 mA cm−2
,
respectively. These capacities are much lower than the theoretical
capacity of 175 mAh g−1. Since lithium ions migrate more diffi-
cultly in the SPE compared with liquid electrolyte, they are not able
to intercalate and de-intercalate the electrode materials promptly
resulting in the large polarization resistance. In addition, the high
interfacial resistance will consume a part of capacity when the cell
is charged or discharged. Consequently, the test cell delivers lower
capacity. The cycling performance of the test cell at 0.1C shows
that the test cell is able to deliver a capacity of about 65 mAh g−1 in
the 15th cycle. The results suggest that the as-prepared SPE should
be applied in LIBs after further modification. The work is under
way.
4. Conclusions
A
zwitterionic-type
ionic
liquid,
1-(1-methyl-3-
imidazolium)propane-3-sulfonate (MIm3S) has been synthesized
successfully via one step and was incorporated into the P(VdF-
HFP)-based SPE containing EMIBF4 and LiBF4. The resultant SPE
showed a thermal decomposition temperature more than 300 ◦C.
Since the zwitterionic salt would facilitate the formation of the SEI
film on the surface of Li electrode and enhance the disassociation
of lithium salt in the SPE, the electrochemical properties of the
SPE were improved by incorporation of the MIm3S. When the
[41] E. Abitelli, S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, M. Fagnoni, A.
Albini, C. Gerbaldi, Electrochim. Acta 55 (2010) 5478.
[42] D. Bansal, F. Cassel, F. Croce, M. Hendrickson, E. Plichta, M. Salomon, J. Phys.
Chem. B 109 (2005) 4492.