Mendeleev Commun., 2015, 25, 334–335
I
In conclusion, we have discovered a new and convenient access
to novel type of ionic liquids possessing two disulfide-tethered
azolium moieties. The key steps of the reaction mechanism
involve oxidation of the mercapto group and alkylation of the
azole nitrogen atoms. The synthesis can be accomplished in one
synthetic operation without solvents and basic media.
O
I–
N
N
N
N
I2
2 I
I
+
SH
4
SH
N
– HI
O
N
H
1
3
This work was supported by the President of the Russian
Federation (program for the support of leading scientific schools,
grant no. NSh-3649.2014.3). The main results were obtained
using the equipment of Baikal Analytical Center of Collective
Users SB RAS.
O
I
B
4
I–
Me2C=O
I3
+ 2 I2
+
+
2 HI
I2
References
Scheme 2
1 (a) A. Foroumadi, S. Mansouri, Z. Kiani and A. Rahmani, Eur. J. Med.
Chem., 2003, 38, 851; (b) B. S. Holla, B. Veerendra, M. K. Shivananda
and B. Poojary, Eur. J. Med. Chem., 2003, 38, 759; (c) Z.-G. Le, T. Zhong,
Z.-B. Xie, X.-X. Lu and X. Cao, Synth. Commun., 2010, 40, 2525.
2 (a) T. P. Kofman, T. F. Uvarova and G.Yu. Kartseva, Zh. Org. Khim., 1995,
31, 271 (in Russian); (b) A. Dzygiel, B. Rzeszotarska, E. Masiukiewicz,
P. Cmoch and B. Kamieñski, Chem. Pharm. Bull., 2004, 52, 192.
3 (a) K. Suzuki, T. Kuroda, Y. Miura and J. Murai, Plant Dis., 2003, 87,
779; (b) D. Lafortune, M. Béramis, A.-M. Daubèze, N. Boissot and
A. Palloix, Plant Dis., 2005, 89, 501.
The molecular iodine, formed during the reduction, takes part
in oxidation of the mercapto group and generation of triiodide
anion of salt 4.
To verify the results obtained, we have carried out a counter
synthesis of liquid salt 4 by the reaction between ditriazolyl
disulfide 5 and 1-iodopropan-2-one 2 (Scheme 3).‡ In this case,
homogeneity of the medium is reached due to ionic liquid 4,
which is formed in the course of the reaction.
4 E. V. Lider, D. A. Piryazev, A. V. Virovets, L. G. Lavrenova, A. I.
Smolentsev, E. M. Uskov, A. S. Potapov and A. I. Khlebnikov, J. Struct.
Chem., 2010, 51, 514 (Zh. Strukt. Khim., 2010, 51, 532).
N
N
N
N
5 J. Zhou, X. Liu, Y. Zhang, B. Li and Y. Zhang, Inorg. Chem. Commun.,
2006, 9, 216.
S
S
N
N
N N
N
N
2 (2 equiv.)
O O
S
S
– HI
6 (a)A. L. Romanyuk, B. L. Litvin, N. I. Ganushchak and R. M.Vishnevskii,
Russ. J. Gen. Chem., 2006, 76, 1834 (Zh. Obshch. Khim., 2006, 76, 1919);
(b) X. Meng, U. J. Li, H. Hou, Y. Song, Y. Fan andY. Zhu, J. Mol. Struct.,
2008, 891, 305.
7 M. S. Pevzner, Mendeleev Chem. J., 1997, 41, 73 [Ross. Khim. Zh. (Zh.
Ross. Khim. Ob-va im. D. I. Mendeleeva), 1997, 41, 113].
N
N
H
H
Me
Me
5
Me
Me
O
O
8 (a)Y. Gao, H. Gao, C. Piekarski and J. M. Shreeve, Eur. J. Inorg. Chem.,
2007, 4965; (b) D. Meyer and T. Strassner, J. Org. Chem., 2011, 76, 305.
9 (a) A. Duran, H. N. Dogan and S. Rollas, Farmaco, 2002, 57, 559;
(b) B. S. Holla, B. Veerendra, M. K. Shivananda and B. Poojary, Eur. J.
Med. Chem., 2003, 38, 759.
N I–
N
I–
N
2 (2 equiv.)
N
N
4
S
S
N
10 M. S. R. Murty, K. R. Ram, R. V. Rao, J. S.Yadav, J. V. Rao, R. Pamanji
O
O
and L. R. Velatooru, Lett. Drug Des. Discov., 2012, 9, 276.
Me
Me
11 (a) L. Labanauskas, E. Udrenaite, P. Gaidelis andA. Brukstus, Farmaco,
2004, 59, 255; (b) G. F. Yang, R. J. Lu and X. N. Fei, Chin. J. Chem.,
2000, 18, 435.
Scheme 3
12 (a) N. O. Yarosh, L. V. Zhilitskaya, L. G. Shagun, I. A. Dorofeev, L. I.
Larina and M. G. Voronkov, Russ. J. Org. Chem., 2013, 49, 475 (Zh.
Org. Khim., 2013, 49, 486); (b) N. O. Yarosh, L. V. Zhilitskaya, L. G.
Shagun, I. A. Dorofeev, L. I. Larina and M. G. Voronkov, Russ. J. Org.
Chem., 2013, 49, 1546 (Zh. Org. Khim., 2013, 49, 1567); (c) L. G. Shagun,
I. A. Dorofeev, N. O. Yarosh, L. V. Zhilitskaya, L. I. Larina and M. G.
Voronkov, Russ. J. Org. Chem., 2013, 49, 1528 (Zh. Org. Khim., 2013, 49,
1693); (d) M. G. Voronkov, N. O.Yarosh, L. V. Zhilitskaya, L. G. Shagun,
I. A. Dorofeev and L. I. Larina, Russ. J. Gen. Chem., 2013, 83, 2057
(Zh. Obshch. Khim., 2013, 83, 2340); (e) M. G. Voronkov, L. G. Shagun,
I. A. Dorofeev, L. V. Zhilitskaya, N. O. Yarosh and L. I. Larina, Russ.
Chem. Bull., Int. Ed., 2013, 11, 2261 (Izv. Akad. Nauk, Ser. Khim., 2013,
2554); (f) V. A. Shagun, I. A. Dorofeev and L. G. Shagun, J. Struct. Chem.,
2013, 54, 819 (Zh. Strukt. Khim., 2013, 54, 829); (g) L. V. Zhilitskaya,
N. O. Yarosh, L. G. Shagun, I. A. Dorofeev and L. I. Larina, Russ. J.
Gen. Chem., 2014, 84, 1754 (Zh. Obshch. Khim., 2014, 84, 2055).
13 A. R. Katritzky and J. Wu, Synthesis, 1994, 597.
The structure of salt 4 was proved by elemental analysis,
IR, UV, H, 13C and 15N NMR techniques. In the H and 13C
NMR spectra, signals of the CH2 groups are observed at 4.4 and
42.7 ppm, respectively. The 2D 15N HMBC 1H-15N NMR spectra
of the salt show cross-peaks of N-1, N-2, N-4 nitrogen atoms with
protons of both the triazole ring and the methylene fragments. In
the IR spectra, the carbonyl groups are present in the region of
1737 cm–1. The UV spectra of salt 4 contain absorption bands,
which are typical of iodide (210 nm) and triiodide (287 and
362 nm) anions.15
1
1
‡
Reaction between 3,3'-dithiobis-4H-1,2,4-triazole 5 and 1-iodopropan-
2-one 2. Disulfide 5 (0.2 g, 1 mmol) was added to ketone 2 (0.74 g,
4 mmol) under argon at 45°C. The reaction mixture was stirred for 2 h at
62°C until disappearance of compound 2. Salt 4 was isolated and purified
by general procedure to give 0.33 g (32%) of dark-red oil (Rf = 0.84,
acetone). 1H NMR, d: 2.34 (s, 12H, Me), 4.40 (s, 8H, NCH2), 9.41 (s, 2H,
H-5). 13C NMR, d: 28.05 (Me), 42.77 (CH2), 143.90 (C-5), 153.95 (C-3),
199.85 (C=O). 15N NMR, d: –113.8 (N-1), –146.3 (N-2, 3JNH 8.1 Hz), –187.8
(N-4, 2JNH 9.6 Hz). Found (%): C, 20.15; H, 2.12; I, 54.10; N, 8.45; S, 6.55.
Calc. for C16H22I4N6O4S2 (%): C, 20.55; H, 2.35; I, 54.38; N, 8.99; S, 6.85.
Compound 5 was synthesized according to the published protocol16
by mixing the ethanol solution of 1,2,4-triazole-3-thiol 1 (1 g, 10 mmol)
and I2 (5 g, 20 mmol). The reaction course and compounds purity were
monitored by TLC using Silufol UV-254 plates (acetone as eluent).
14 N. O. Yarosh, L. V. Zhilitskaya, L. G. Shagun and I. A. Dorofeev, Russ.
J. Org. Chem., 2014, 50, 1384 (Zh. Org. Khim., 2014, 50, 1398).
15 P. Reiller, F. Mercier-Bion, N. Gimenez, N. Barre and F. Miserque,
Radiochim. Acta, 2006, 94, 739.
16 M. S. Chernovyants, N. V. Aleshina, I. N. Shcherbakov, Z. A. Starikova,
Russ. J. Gen. Chem., 2013, 83, 986 (Zh. Obshch. Khim., 2013, 83, 852).
Received: 11th February 2015; Com. 15/4561
– 335 –