S. G. Gouin et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2684–2688
2687
Centre National de la Recherche Scientifique, the Ministère
Délégué à l’Enseignement Supérieur et à la Recherche.
(a)
(b)
(c)
References and notes
1
.
For a review: (a) Bowen, M. L.; Orvig, C. Chem. Commun. 2008, 5077; (b)
Ferreira, C. L.; Bayly, S. R.; Green, D. E.; Storr, T.; Barta, C. A.; Steele, J.; Adam, M.
J.; Orvig, C. Bioconjugate Chem. 2006, 17, 1321; (c) Petrig, J.; Schibli, R.; Dumas,
C.; Alberto, R.; Schubiger, P. A. Chem. Eur. J. 2001, 7, 1868; (d) Bayly, S. R.; Fisher,
C. L.; Storr, T.; Adam, M. J.; Orvig, C. Bioconjugate Chem. 2004, 15, 923; (e)
Branco de Barros, A. L.; Cardoso, V. N.; Das Graças Mota, L.; Amaral Leite, E.;
Cristina de Oliveira, M.; José Alves, R. Bioorg. Med. Chem. Lett. 2009, 19, 2497.
(a) Gottschaldt, M.; Bohlender, C.; Müler, D.; Klette, I.; Baum, R. P.; Yano, S.;
Schubert, U. S. Dalton Trans. 2009, 5148; (b) Mikata, Y.; Shinohara, Y.; Yoneda,
K.; Nakamura, Y.; Esaki, K.; Tanahashi, M.; Brudzin, I.; Hirohara, S.; Yokoyama,
M.; Mogami, K.; Tanase, T.; Kitayama, T.; Takashiba, K.; Nabeshima, K.; Takagi,
R.; Takatani, M.; Okamoto, T.; Kinoshita, I.; Doe, M.; Hamazawa, A.; Morita, M.;
Nishida, F.; Sakakibara, T.; Orvig, C.; Yano, S. J. Org. Chem. 2001, 66, 3783; (c)
Dumas, C.; Petrig, J.; Frei, L.; Spingler, B.; Schibli, R. Bioconjugate Chem. 2005, 16,
421; (d) Dumas, C.; Schibli, R.; Schubiger, P. A. J. Org. Chem. 2003, 68, 512; (e)
Ferreira, C. L.; Ewart, C. B.; Bayly, S. R.; Patrick, B. O.; Steele, J.; Adam, M. J.;
Orvig, C. Inorg. Chem. 2006, 45, 6979; (f) Benoist, E.; Coulais, Y.; Almant, M.;
Kovensky, J.; Moreau, V.; Lesur, D.; Artigau, M.; Picard, C.; Galaup, C.; Gouin, S.
G. Carbohydr. Res. 2011, 346, 26.
300
400
500
λ (nm)
600
700
800
Figure 3. (a) Excitation (kem = 616 or 545 nm) and emission (kexc = 276 nm) spectra
of 3.Tb (b), 3.Eu (c) in Tris buffer at 298 K.
2
.
Table 1
Absorption maxima wavelengths (kmax in nm) and their corresponding molar
À1
À1
absorption coefficients (
yields ( in %), hydration state (q), brightness (B in M cm ) for the Eu and Tb
glycoconjugates in Tris buffer solution at 298 K (pH 7.4, 50 mM)
e in M cm ), luminescence lifetimes (s in ms), quantum
À1
À1
3+
3+
U
a
a
qb
Bc
Compound
k
max
(
e)
s
H
s
D
U
1
2
3
1
2
3
.Eu
.Eu
.Eu
.Tb
.Tb
.Tb
276 (2420)
276 (2550)
276 (5600)
276 (2355)
276 (2415)
276 (5575)
0.39
0.39
0.39
1.18
1.18
1.18
2.33
2.30
2.35
2.45
2.55
2.46
0.4
0.6
0.6
2.3
2.9
3.0
2.02
2.02
2.03
1.90
1.97
1.90
10
15
34
54
70
3
.
.
Helbich, T. H.; Gossman, A.; Mareski, P. A.; Radüchel, B.; Roberts, T. P. L.;
Shames, D. M.; Mühler, M.; Turetschek, K.; Brasch, R. C. J. Magn. Reson. Imaging
2000, 11, 694.
4
Corsi, D. M.; Vander Elst, L.; Muller, R. N.; van Bekkum, H.; Peters, J. A. Chem.
Eur. J. 2001, 7, 64.
167
5. (a) Song, Y.; Kohlmeir, E. K.; Meade, T. J. J. Am. Chem. Soc. 2008, 130, 6662; (b)
Kotková, Z.; Kotek, J.; Jirák, D.; Jendelová, P.; Herynek, V.; Berková, Z.; Hermann,
P.; Lukeš, I. Chem. Eur. J. 2010, 16, 10094.
a
Data obtained in aerated Tris buffer, H
2
2
O (H) or D O (D) solutions.
b
For europium complexes: q = 1.11(1/
À 1/ À 0.06).
Determined at 276 nm.
H D
s À 1/s À 0.31); for terbium complexes:
6
7
.
.
Tanaka, H.; Ando, Y.; Wada, M.; Takahashi, T. Org. Biomol. Chem. 2005, 3, 3311.
Lemieux, G. A.; Yarema, K. J.; Jacobs, C. L.; Bertozzi, C. R. J. Am. Chem. Soc. 1999,
121, 4278.
q = 5(1/
s
H
s
D
c
8
9
.
.
Bünzli, J.-C. G. Chem. Rev. 2010, 110, 2729.
Bünzli, J.-C. G.; Piguet, C. Chem. Soc. Rev. 2005, 34, 1048.
10. (a) Sabbatini, N.; Guardigli, M.; Lehn, J.-M. Coord. Chem. Rev. 1993, 123, 201; (b)
Brunet, E.; Juanes, O.; Rodriguez-Ubis, J.-C. Curr. Chem. Biol. 2007, 1, 11.
11. Kropp, J. L.; Windsor, M. W. J. Phys. Chem. 1965, 42, 1599.
2. Laurent, S.; Vander Elst, L.; Wautier, M.; Galaup, C.; Muller, R. N.; Picard, C.
Bioorg. Med. Chem. Lett. 2007, 17, 6230.
3. Pellegatti, L.; Zhang, J.; Drahos, B.; Villette, S.; Suzenet, F.; Guillaumet, G.;
Petoud, S.; Toth, E. Chem. Commun. 2008, 48, 6591.
4. Moats, R. A.; Fraser, S. E.; Meade, T. J. Angew. Chem., Int. Ed. 1997, 36, 726.
5. (a) Mastarone, D. J.; Harrison, V. S. R.; Eckermann, A. L.; Parigi, G.; Luchinat, C.;
Meade, T. J. J. Am. Chem. Soc. 2011, 133, 5329; (b) Floyd, W. C.; Klemm, P. J.;
Smiles, D. E.; Kohlgruber, A. C.; Pierre, V. R. C.; Mynar, J. L.; Freichet, J. M. J.;
Raymond, K. N. J. Am. Chem. Soc. 2011, 133, 2390.
Ln3+ complexation. Meade and co-workers28 previously showed
that such an effect could occur with specific sugar residues and
the Gd ion. They reported that a galactopyranose sugar moiety
tethered to a DO3A-Gd(III) complex could sterically prevent water
access to the Gd ion.
The brightness value, corresponding to the product of the
absorption coefficient at an excitation wavelength and the quan-
tum yield, is indicative of the overall luminescence efficiency of
the complexes. Grafting two pyridine-chelates to a sugar scaffold
enhances the luminescence emission intensity by a factor of 2–3
compared to the corresponding mono-chelate. It seems, therefore,
that the tethered lanthanide complexes do not self-quench in con-
trast to fluorescent organic probes.29 Indeed, two fluorescent
probes in close proximity may self-quench if their absorption
and emission spectra overlap. In this case, the large Stokes shift
of lanthanide complexes overcomes this undesirable self-quench-
ing phenomenon.
1
1
1
1
1
6. Almant, M.; Moreau, V.; Kovensky, J.; Bouckaert, J.; Gouin, S. G. Chem. Eur. J.
2
011, 17, 10029.
17. Maunier, V.; Boullanger, P.; Lafont, D.; Chevalier, Y. Carbohydr. Res. 1997, 299,
9.
4
1
8. (a) Gouin, S. G.; Kovensky, J. Tetrahedron Lett. 2007, 48, 2875; (b) Lyle, F. R. U.S.
Patent 5 973 257, 1985; Chem. Abstr. 1985, 65, 2870.
19. Jiménez-Blanco, J. L.; García Fernández, J. M.; Gadelle, A.; Defaye, J. Carbohydr.
Res. 1997, 303, 367.
2
2
0. Sharbert, B., Eur. Pat. Appl., EP 053313, 1992.
1. Selected spectral data for 11 and 12. Compound 11: NMR 1H (CDCl
3
, 300 MHz)
d (ppm): 1.45 (s, 36H: tBu); 3.53 (s, 8H: CH COO); 4.13 (s, 4H, CH py); 8.11 (s,
2
2
2H, Hpy). NMR 13C (CDCl
, 75 MHz) d (ppm): 28.1 (CH
3
3
2
); 52.5 (NCH COO); 55.8
(
NCH
2
py); 81.4 (Cq tBu); 121.6 (C3,5-py); 142.75 (C4-py); 158.9 (C2,6-py); 167.9
A click methodology was implemented to graft an alkynyl pyr-
idine-chelate to hydrophilic and biocompatible carbohydrate scaf-
folds. The resulting glycoconjugates were shown to retain their
+
+
+
(
1
COOH); 170.5 (COOtBu). MS (ES ) = 660.3 [M+Na ]; 638.1 [M+H ]. Compound
2: NMR 1H (CDCl
, 300 MHz) d (ppm): 1.44 (s, 36H: tBu); 2.03 (t, 1H,
J = 2.4 Hz: HC„); 2.52 (td, 2H, J = 6.6 Hz, J = 2.7 Hz: CH C„); 3.47 (s, 8H:
CH COO); 3.60 (q, 2H, J = 6.6 Hz: CH NH); 4.06 (s, 4H, CH py); 6.94 (m, 1H, NH);
.91 (s, 2H, Hpy). NMR 13C (CDCl
, 75 MHz) d (ppm): 19.3 (CH C„); 28.1 (CH );
8.7(CH NH); 56.0 (NCH COO); 59.8 (NCH py); 70.1 („CH); 81.2 (Cq tBu); 81.4
C„); 118.6 (C3,5-py); 142.7 (C4-py); 159.9 (C2,6-py); 166.2 (CONH); 170.5
3
2
complexing abilities towards Eu3 and Tb with regard to the cor-
+
3+
2
2
2
7
3
3
2
3
responding unfunctionalized chelate. The divalent conjugates 3.Ln
2
2
2
(
Ln = Eu, Tb) were two to three times more fluorescent than their
(CH
COOtBu). MS (ES ) = 711.4 [M+Na ] (100); 689.4 [M+H ] (55) HR-MS (TOF
2
+
+
+
(
monovalent counterparts. Thus, labeling biomolecules with multi-
valent lanthanide probes may offer interesting opportunities to in-
crease the detection threshold of specific targeted biomolecules. In
further investigations, we will explore the relaxivity properties of
the corresponding Gd-conjugates, and apply the synthetic method-
ology developed to the design of carbohydrate lanthanide probes
with higher valency.
+
+
ES ) = calculated for M+H = 689.4126; found = 689.4111.
2. Féau, C.; Klein, E.; Kerth, P.; Lebeau, L. Bioorg. Med. Chem. Lett. 2007, 17, 1499.
2
23. Pérez, D.; Burés, G.; Guitián, E.; Castedo, L. J. Org. Chem. 1996, 61, 1650.
4. (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int.
2
Ed. 2002, 41, 2596; (b) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem.
2
002, 67, 3057.
25. Rodios, N. A. J. Heterocycl. Chem. 1984, 21, 1169.
6. Experimental procedure and analytical data for 1. Compound
6.8 mol) and 13 (20.3 mg, 29.4 mol) were dissolved in a dioxane/water
mixture (2/0.5 mL). Copper sulfate (4.2 mg, 26.3 mol) and sodium ascorbate
(10 mg, 54 mol) were added and the mixture was stirred at 70 °C for 45 min
under W irradiation. The mixture was evaporated under reduced pressure,
2
5 (10 mg,
2
l
l
l
Acknowledgments
l
l
dissolved in dichloromethane (10 mL), and the organic layer washed with an
aqueous solution of ethylenediamine tetraacetic acid trisodium salt (500 mg in
This work was carried out with financial support from the
French Agence Nationale de la Recherche (ANR JC07_183019), the
4
10 mL) and water (10 mL). The organic layer was dried over MgSO , filtered