BIOCATALYSIS AND BIOTRANSFORMATION
9
Endo A, Kurinomaru T, Shiraki K. 2016. Hyperactivation of
a-chymotrypsin by the Hofmeister effect. J Mol Catal B
Enzym. 133:S432–S438.
Martin NJA, List B. 2006. Highly enantioselective transfer
hydrogenation of a,b-unsaturated ketones. J Am Chem
Soc. 128:13368–13369.
Nestl BM, Hammer SC, Nebel BA, Hauer B. 2014. New gener-
ation of biocatalysts for organic synthesis. Angew Chem
Int Ed Engl. 53:3070–3095.
Peng D, Zhang C, Welborn M, Shepherd JJ, Zhu T, Voorhis
TV, Pentelute BL. 2016. Salt effect accelerates site-selective
cysteine bioconjugation. ACS Cent Sci. 2:637–646.
Pinna MC, Salis A, Monduzzi M, Ninham BW. 2005.
Hofmeister series: the hydrolytic activity of Aspergillus
niger lipase depends on specific anion effects. J Phys
Chem B. 109:5406–5408.
Reetz MT. 2013. Biocatalysis in organic chemistry and bio-
technology: past, present, and future. J Am Chem Soc.
135:12480–12496.
Salis A, Bilanicova D, Ninham BW, Monduzzi M. 2007.
Hofmeister effects in enzymatic activity: weak and strong
electrolyte influences on the activity of Candida rugosa
lipase. J Phys Chem B. 111:1149–1156.
Salis A, Ninham BW. 2014. Models and mechanisms of
Hofmeister effects in electrolyte solutions, and colloid and
protein systems revisited. Chem Soc Rev. 43:7358–7377.
Schmid RD, Verger R. 1998. Lipases: interfacial enzymes with
attractive applications. Angew Chem Int Ed Engl.
37:1608–1633.
Shen LL, Wang F, Mun HS, Suh M, Jeong JH. 2008. Solvent-
dependent reactivity in porcine pancreatic lipase
(PPL)-catalyzed hydrolysis. Tetrahedron: Asymmetry. 19:
1647–1653.
Thodi K, Barbayianni E, Fotakopoulou I, Bornscheuer UT,
Constantinou-Kokotou V, Moutevelis-Minakakis P, Kokotos
G. 2009. Study of the removal of allyl esters by Candida
antarctica lipase B (CAL-B) and pig liver esterase (PLE).
J Mol Catal B Enzym. 61:241–246.
Wells AS, Finch GL, Michels PC, Wong JW. 2012. Use of
enzymes in the manufacture of active pharmaceutical
ingredients-a science and safety-based approach to
ensure patient safety and drug quality. Org Process Res
Dev. 16:1986–1993.
Endo A, Kurinomaru T, Shiraki K. 2018. Hyperactivation of serine
proteases by the Hofmeister effect. Mol Catal. 455:32–37.
ꢀ
~
Escalante J, Dıaz-Coutino FD. 2009. Synthesis of c-nitro ali-
phatic methyl esters via michael additions promoted by
microwave irradiation. Molecules. 14:1595–1604.
Faber K. 2011. Biotransformations in organic chemistry: a
textbook. Heidelberg: Springer-Verlag.
€
Furstner A, Bouchez LC, Morency L, Funel JA, Liepins V,
ꢀ
Poree FH, Gilmour R, Laurich D, Beaufils F, Tamiya M.
2009. Total syntheses of amphidinolides B1, B4, G1, H1
and structure revision of amphidinolide H2. Chemistry.
15:3983–4010.
ꢀ
ꢀ
Heyda J, Pokorna J, Vrbka L, Vacha R, Jagoda-Cwiklik B,
ꢀ
Konvalinka J, Jungwirth P, Vondrasek J. 2009. Ion
specific effects of sodium and potassium on the catalytic
activity of HIV-1 protease. Phys Chem Chem Phys.
11:7599–7604.
Hirai Y, Yokota K, Yamaaki T, Momose T. 1990. A total syn-
thesis of (þ)-Geodiamolides a and b, the novel cyclodesi-
peptides. Heterocycles. 30:1101–1119.
Hoffman RV, Kim HO. 1995. The stereoselective synthesis of
2-alkyl.gamma.-keto acid and heterocyclic ketomethylene
peptide isostere core units using chiral alkylation by
2-triflyloxy esters. J Org Chem. 60:5107–5113.
Huang X, Knoell CT, Frey G, Hazegh-Azam M, Tashjian AH,
Hedstrom L, Abeles RH, Timasheff SN. 2001. Modulation of
recombinant human prostate-specific antigen: activation
by hofmeister salts and inhibition by azapeptides.
Appendix: thermodynamic interpretation of the activation
by concentrated salts. Biochemistry. 40:11734–11741.
Hult K, Berglund P. 2007. Enzyme promiscuity: mechanism
and applications. Trends Biotechnol. 25:231–238.
Jungwirth P, Cremer PS. 2014. Beyond Hofmeister. Nat
Chem. 6:261–263.
Kapoor M, Gupta MN. 2012. Lipase promiscuity and its bio-
chemical applications. Proc Biochem. 47:555–569.
Korpak M, Pietruszka J. 2011. Chemoenzymatic one-pot syn-
thesis of c-butyrolactones. Adv Synth Catal. 353:1420–1424.
Kunz W, Henle J, Ninham BW. 2004. ‘Zur Lehre von der
Wirkung der Salze’ (about the science of the effect of
salts): Franz Hofmeister’s historical papers. Curr Opin
Colloid Interface Sci. 9:19–37.
Xu YY, Liu C, Liu ZP. 2013. Advances in the total synthesis of
cyclodepsipeptide (þ)-Jasplakinolide (Jaspamide) and its
analogs. Curr Org Synth. 10:67–89.
Yang Z, Liu XJ, Chen C, Halling PJ. 2010. Hofmeister effects
on activity and stability of alkaline phosphatase. Biochim
Biophys Acta. 1804:821–828.
Kunz W, Lo Nostro P, Ninham BW. 2004. The present state of
affairs with Hofmeister effects. Curr Opin Colloid Interface
Sci. 9:1–18.
Zhang Y, Cremer PS. 2006. Interactions between macromole-
cules and ions: the Hofmeister series. Curr Opin Chem
Biol. 10:658–663.
Lo Nostro P, Ninham BW. 2012. Hofmeister phenomena:
an update on ion specificity in biology. Chem Rev.
112:2286–2322.
Zheng GW, Xu JH. 2011. New opportunities for biocatalysis:
driving the synthesis of chiral chemicals. Curr Opin
Biotechnol. 22:784–792.