Advanced Synthesis & Catalysis
10.1002/adsc.201900811
2
013, 2013, 484613; d) D. Leitsch, C.F. Williams, I.
c)W.A. Cantara, F.V. Murphy, H. Demirci, P.F. Agris,
Proc. Natl. Acad. Sci. USA 2013, 110, 10964-10969;
and [6e].
Hrdý, Trends Parasitol. 2018, 34, 576-589.
[
[
3] a) T.J. Kappock, J. P. Caradonna, Chem. Rev.1996, 96,
2
659-2756; b) R. Breslow, Artificial Enzymes, 2005,
Wiley; c) H. Wei, E. Wang, Chem. Soc. Rev. 2013, 42,
060-6093.
[11] a) S. Kriaucionis, N. Heintz, Science 2009, 324, 929-
930; b) S. Ito, A.C. D’Alessio, O.V. Taranova, K. Hong,
L.C. Sowers, Y. Zhang, Nature 2010, 466, 1129-1133;
c) S. Ito, L. Shen, Q. Dai, S.C. Wu, L.B. Collins, J.A.
Swenberg, C. He, Y. Zhang, Science 2011, 333, 1300-
6
4] a) D.B. Dunn, Biochim. Biophys Acta 1960, 38, 176-
78; b) Y. Chen, H. Sierzputowska-Gracz, K. Everett,
1
1
303; d) T. Pfaffeneder, B. Hackner, M. Truß, M.
P. F. Agris, Biochemistry 1993, 32, 10249-10253; c) S.
Edelheit, S. Schwartz, M.R. Mumbach, O. Wurtzel, R.
Sorek, PLoS Genet. 2013, 9, e1003602.
Mnzel, M. Mller, C.A. Deiml, C. Hagemeier, T. Carell,
Angew. Chem. Int. Ed. 2011, 50, 7008-7012; e) S. Haag,
K.E. Sloan, N. Ranjan, A.S. Warda, J. Kretschmer, C.
Blessing, B. Hübner, J. Seikowski, S. Dennerlein, P.
Rehling, M.V. Rodnina, C. Höbartner, M.T. Bohnsack,
EMBO J. 2016, 35, 2104-2119; f) L. Kawarada, T.
Suzuki, T. Ohira, S. Hirata, K. Miyauchi, T. Suzuki,
Nucleic Acid Res. 2017, 45, 7401-7415; and [5b].
[
[
5] a) J.F. Koerner, S. Varadarajan, J. Biol. Chem. 1960,
2
35, 2688-2690; b) L. Fu, C.R. Guerrero, N. Zhong, N.
J. Amato, Y. Liu, S. Liu, Q. Cai, D. Ji, S.-J. Jin, L.J.
Niedernhofer, G.P. Pfeifer, G.-L. Xu, Y. Wang, J. Am.
Chem. Soc. 2014, 136, 11582-11585; c) S.M. Huber, P.
van Delft, L. Mendil, M. Bachman, K. Smollett, F.
[
[
12] a) A.A.H.A. Rahman, T. Wada, K. Saigo,
Tetrahedron Lett. 2001, 42, 1061-1063; b) A.R. Kore,
B. Yang, B. Srinivasan, Tetrahedron Lett. 2013, 54,
5325-5327. c) B. Steigenberger, S. Schiesser, B.
Hackner, C. Brandmayr, S.K. Laube, J. Steinbacher, T.
Pfaffeneder, T. Carell, Org. Lett. 2013, 15, 366-369.
Werner,
E.A.
Miska,
S.
Balasubramanian,
ChemBioChem 2015, 16, 752-755.
6] a) G. Kawai, T. Yokogawa, K. Nishikawa, T. Ueda, T.
Hashizume, J.A. McCloskey, S. Yokoyama, K.
Watanabe, Nucleosides Nucleotides 1994, 13, 1189-
1
199; b) J. Moriya, T. Yokogawa, K. Wakita, T. Ueda,
13] a) T. Itahara, Chem. Lett. 1991, 20, 1591-1594; b) I.
Toshio, Y. Takashi, K. Sunao, N. Akihiro, Bull. Chem.
Soc. Jpn. 1994, 67, 2257-2264; c) C. Bienvenu, J.R.
Wagner, J. Cadet, J. Am. Chem. Soc. 1996, 118, 11406-
K. Nishikawa, P.F. Crain, T. Hashizume, S.C.
Pomerantz, J.A. McCloskey, G. Kawai, N. Hayashi, S.
Yokoyama, K. Watanabe, Biochemistry 1994, 33,
2
234-2239; c) H. Lusic, E.M. Gustilo, F.A. Vendeix, R.
1
1411; d) H. Yamada, K. Tanabe, T. Ito, S.I.
Kaiser, M.O. Delaney, W.D. Graham, V.A. Moye, W.A.
Cantara, P.F. Agris, A. Deiters, Nucleic Acids Res.
2
Stathis, T. Pfaffeneder, F.A. Gnerlich, C. A. Deiml, S.
C. Koch, K. Karaghiosoff, T. Carell, Chem. Eur. J.
Nishimoto, Chem. Eur. J. 2008, 14, 10453-10461; e) J.
R. Wagner, J. Cadet, Acc. Chem. Res. 2010, 43, 564-
008, 36, 6548-6557; d) M. Munzel, U. Lischke, D.
5
71. f) S.-G. Xu, Q. Wu, L. Cui, D. -W. Zhang, F.-W.
Shao, Bioorg. Med. Chem. Lett. 2015, 25, 1186-1191.
2
011, 17, 13782-13788; [e] S. Nakano, T. Suzuki, L.
[14] a) L.-J. Xie, R.- L. Wang, D. Wang, L. Liu, L. Cheng,
Chem. Commun. 2017, 53, 10734-10737; b) L.-J. Xie,
X.-T. Yang, R.-L. Wang, H.-P. Cheng, Z.-Y. Li, L. Liu,
L.-Q. Mao, M. Wang, L. Cheng, Angew. Chem. Int. Ed.
Kawarada, H. Iwata, K. Asano, T. Suzuki, Nat. Chem.
Biol. 2016, 12, 546-551.
[
7] a) Y.-F. He, B.-Z. Li, Z. Li, P. Liu, Y. Wang, Q.-Y.
Tang, J.-P. Ding, Y.-Y. Jia, Z.-C. Chen, L. Li, Y. Sun,
2
019, 58, 5028-5032.
X.-X, Li, Q. Dai, C.-X. Song, K.-L. Zhang, C. He, G.-L. [15] a) Y. Huang, J.-L. Yan, Q. Li, J.-F. Li, S.-Z. Gong, H.
Xu, Science 2011, 333, 1303-1307; b) W. Huang, M.-D.
Lan, C.-B. Qi, S.-J. Zheng, S.-Z. Wei, B.-F. Yuan, Y.-
Q. Feng, Chem. Sci. 2016, 7, 5495-5502; c) S.-G. Jin,
Z.-M. Zhang, T.L. Dunwell, M.R. Harter, X.-W. Wu, J.
Johnson, Z. Li, J.-C. Liu, P.E. Szabo, Q. Lu, G.-L. Xu,
J.-K. Song, G.P. Pfeifer, Cell Rep. 2016, 14, 493-505.
Zhou, J.-H. Gan, H.-L. Jiang, G.-F. Jia, C. Luo, C.-G.
Yang, Nucleic Acids Res. 2015, 43, 373-384; b) J.-J.
Wu, H. Xiao, T.-L. Wang, T.-T. Hong, B. -S. Fu, D.-S.
Bai, Z.-Y. He, S. Peng, X. -W. Xing, J.-L. Hu, P. Guo,
X. Zhou, Chem. Sci. 2015, 6, 3013-3017; c) Q. Li, Y.
Huang, X. Liu, J. Gan, H. Chen, C.-G. Yang, J. Biol.
Chem. 2016, 291, 11083-11093.
[
8] a) W. Chen, H. Lin, NonCoding RNA 2017, 3, 1; b) N.
Jonkhout, J. Tran, M.A. Smith, N. Schonrock, J.S.
Mattick, E.M. Novoa, RNA 2017, 23, 1754-1769; c) S.
Nachtergaele, C. He, RNA Biol. 2017, 14, 156-163; d)
L.A. Roundtree, M.E. Evans, T. Pan, C. He, Cell 2017,
[16] a) K. Kano, M. Nakagawa, K. Takagi, T. J. Ikeda,
Chem. Soc. Perkin Trans. 2 1997, 6, 1111-1120; b) N.
Cenas, Z. Anusevicius, H. Nivinskas, L. Miseviciene, J.
Sarlauskas, Methods in Enzymology 2004, 382, 258-
277. c) V.L. Davidson, Quinone cofactors. In
Encyclopedia of Biophysics, G.C.K. Roberts (eds).
1
69, 1187-1200; e) J.-H. Song, C.-Q. Yi, ACS Chem.
Biol. 2017, 12, 316-325.
2
013, Springer, Berlin, Heidelberg.
[
[
9] M.W. Kellinger, C.-X. Song, J. Chong, X.-Y. Lu, C.
He, D. Wang, Nat. Struct. Mol. Biol. 2012, 19, 831-833. [17] P.P. Vaughan, P. Novotny, N. Haubrich, L.
McDonald, M. Cochran, J. Serdula, R.W. Amin, W.H.
Jeffrey, Photochem. Photobiol. 2010, 86, 1327-1333.
10] a) Y. Watanabe, H. Tsurui, T. Ueda, R. Furushima, S.
Takamiya, K. Kita, K. Nishikawa, K.J. Watanabe, Biol.
Chem. 1994, 269, 22902-22906; b) C. Takemoto, L.L.
Spremulli, L.A. Benkowski, T. Ueda, T. Yokogawa, K.
Watanabe, Nucleic Acid Res. 2009, 37, 1616-1627;
[18] J. Shao, C.H. Huang, B. Kalyanaraman, B.Z. Zhu,
Free Radic. Biol. Med. 2013, 60, 177-182.
5
This article is protected by copyright. All rights reserved.