pared by coupling of 5b with geranylgeranylated cysteine
39.90, 39.83, 29.90, 28.62, 28.54, 26.92, 26.70, 25.91, 17.89, 16.37, 16.21
(HRMS FAB): calc. for C23H NO S, 424.2522. Found, 424.2503).
14
methyl ester 8 via the mixed anhydrides method. Dipeptide 9
may serve as an important model compound to study ger-
anylgeranylated Rab proteins.2
39
4
1
∑
5
4
3
Selected data for 9: H NMR (300 MHz, CDCl ): d 7.13 (d, J 6.9 Hz, 1 H),
.36 (brs, 1 H), 5.28–5.17 (m, 2 H), 5.11–5.07 (m, 6 H), 4.80–4.67 (m, 1 H),
.30 (brs, 1 H), 3.23–3.07 (m, 4 H), 3.00–2.80 (m, 2 H), 2.10–1.98 (m, 24
In summary we have described a practical and novel route to
stereospecifically synthesize prenylated cysteines from serine
b-lactone. The optical purity and simplicity of this approach to
prenylated cysteines are attractive features compared with
H), 1.68 (s, 6 H), 1.60 (s, 18 H), 1.47 (s, 9 H); (HRMS CI): calc. for
882.5978. Found 882.5811).
52 86 2 5 2
C H N O S
References
8
previous methods.
1
C. Marshall, Science, 1993, 259, 1865; M. S. Brown and J. L. Goldstein,
Nature, 1993, 366, 14.
2
3
S. Clarke, Annu. Rev. Biochem., 1992, 61, 355.
P. J. Casey, J. Lipid. Res., 1992, 33, 1731.
Footnotes
†
‡
E-mail: Epstein@chemistry.utah.edu
All new compounds described herein have been fully characterized by H
4 W. R. Schafer and J. Rine, Annu. Rev. Genet., 1992, 30, 209.
5 H. C. Rilling, E. Breunger, W. W. Epstein and P. F. Crain, Science,
1990, 247, 318; C. C. Farnsworth, M. H. Gelb and J. A. Glomset,
Science, 1990, 247, 320.
6 Y. Kamiya, A. Sakurai, S. Tamura, N. Takahashi, E. Tsuchiya, K. Abe
and S. Fukui, Agric. Biol. Chem., 1979, 43, 363.
7 M. J. Brown, P. D. Milano, D. C. Lever, W. W. Epstein and
C. D. Poulter, J. Am. Chem. Soc., 1991, 113, 3176.
8 C. C. Yang, C. K. Marlowe and R. Kania, J. Am. Chem. Soc., 1991, 113,
3177.
9 C. B. Xue, J. M. Becker and F. Naider, Tetrahedron Lett., 1992, 33,
1435.
10 E. C. Horning, Org. Synth., 1955, Coll. Vol. 2, 363.
11 E. W. Collington and A. I. Meyers, J. Org. Chem., 1971, 36, 3044.
12 L. D. Arnold, T. H. Kalantar and J. C. Vederas, J. Am. Chem. Soc., 1985,
107, 7105.
1
1
3
and C NMR spectral, HRMS and elemental analyses. Selected data for 2a:
1
H NMR (300 MHz, CDCl
3
): d 5.35 (m, 1 H), 5.10 (m, 2 H), 3.16 (dd, J 7.5,
0
3
1
2
1
1
§
.6 Hz, 2 H), 2.11–1.97 (m, 8 H), 1.68 (d, J 0.9 Hz, 3 H), 1.66 (d, J 0.9 Hz,
1
3
H), 1.60 (s, 6 H), 1.40 (t, J 7.2 Hz, 1 H); C NMR (75 MHz, CDCl
3
): d
37.50, 135.30, 131.29, 124.31, 123.72, 123.28, 39.68, 39.38, 26.70, 26.27,
5.69, 22.11, 17.68, 16.02, 15.77; nmax(neat)/cm2 2966.7, 2926.2, 1446.7,
1
381.1 (Calc. for C15
H26S: C, 75.56; H, 10.99. Found: C, 75.43; H,
1.03%).
1
Selected data for 4a: H NMR (300 MHz, CDCl ): d 5.31 (d, J 6.6 Hz, 1
3
H), 5.21 (t, J 7.8 Hz, 1 H), 5.11–5.06 (m, 2 H), 3.76 (s, 3 H), 3.18 (t, J 8.1
Hz, 2 H), 2.95–2.81 (m, 2 H), 2.07–2.00 (m, 8 H), 1.68 (d, J 1.2 Hz, 3 H),
1
3
1
.67 (d, J 1.2 Hz, 3 H), 1.60 (s, 6 H), 1.45 (s, 9 H); C NMR (75 MHz,
CDCl ): d 171.94, 155.39, 140.16, 135.57, 131.51, 124.52, 123.93, 119.87,
0.27, 53.45, 52.67, 39.90, 39.83, 33.86, 30.23, 28.51, 26.92, 26.62, 25.91,
7.89, 16.34, 16.22. (Calc. for C24 41NO S: C, 65.57; H, 9.40; N, 3.19.
3
8
1
H
4
13 H. Shao, S. H. Wang, C. W. Lee, G. Osapay and M. Goodman, J. Org.
Chem., 1995, 60, 2956.
14 J. R. Vaughan, Jr. and R. L. Osato, J. Am. Chem. Soc., 1952, 73,
3547.
Found: C, 65.63; H, 9.47; N, 3.15%).
¶
1
Selected data for 6a: H NMR (300 MHz, CDCl
3
): d 5.35 (m, 1 H), 5.23
(t, J 7.8 Hz, 1 H), 5.09 (t, J = 6.9 Hz, 2 H), 4.48 (brs, 1 H), 3.21 (m, 2 H),
2
3
1
.93 (m, 1 H), 2.09–2.00 (m, 8 H), 1.68 (d, J 0.9 Hz, 3 H), 1.67 (d, J 1.2 Hz,
1
3
Received in Corvallis, OR, USA, 20th January 1997; Com.
7/00428A
H), 1.60 (s, 6 H),1.46 (s, 9 H); C NMR (75 MHz, CDCl
3
): d 170.00,
55.74, 140.11, 135.44, 131.46, 124.52, 124.01, 119.73, 80.03, 54.17,
864
Chem. Commun., 1997