C. Lambertucci et al. / Tetrahedron Letters 48 (2007) 2143–2145
2145
5.11 (br s, 1H, H-20); 7.91 (d, 1H, J = 9.2 Hz, H-7); 8.22
(dd, 1H, J = 2.2 Hz and 9.2 Hz, H-6); 8.41 (s, 1H, H-3);
8.83 (d, 1H, J = 2.2 Hz, H-4). 13C NMR (DMSO-d6,
200 MHz) d 35.1 (C-30); 54.4 (C-20); 61.4 (C-60); 62.6 (C-
40); 68.0 (C-10); 83.1 (C-50); 111.0 (C-7); 119.2 (C-4); 120.8
(C-6); 123.1 (C-9); 135.8 (C-3); 140.6 (C-8); 141.9 (C-5).
ESMS calcd for C13H16N3O5 ([M+H]+): 294.1090. Found:
294.1086; Compound 4c: 1H NMR (DMSO-d6, 200 MHz)
d 1.88 (m, 1H, H-30a); 2.28 (m, 1H, H-30e); 3.16 (m, 1H,
H-50); 3.55 (m, 3H, H-40 and H-60); 3.77 (m, 1H, H-10a);
4.16 (m, 1H, H-10e); 4.63 (m, 2H, 60-OH and H-20); 4.97
(d, 1H, J = 4.8 Hz, 40-OH); 8.00 (s, 1H, H-2); 8.47 (s, 1H,
of modification per double stranded complex, was stud-
ied with X being one of the different new analogs. How-
ever, even under high salt conditions (1.0 M NaCl) a
mixture of hairpins and duplex structures prevailed, in
contrast with data reported for other modified
analogs.11
3. Conclusions
Three new anhydrohexitol nucleoside analogs were syn-
thesized, characterized, and incorporated into several
oligonucleotide sequences for thermal denaturation
studies. While all modifications destabilized the double
helix upon a single incorporation, 5-nitroindazole con-
gener 4a was the least destabilizing and showed the least
spread in Tm values and therefore is behaving almost
like a true ambiguous nucleoside analog comparable to
the commercially available 5-nitroindazole deoxyribo-
furanoside. The performance of 4a in sequencing and
for PCR primers is under study and is clearly important
in validating its final usefulness as a universal base.
13
H-5). C NMR (DMSO-d6, 300 MHz) d 36.7 (C-30); 54.2
(C-20); 60.2 (C-60 and 40); 67.7 (C-10); 82.7 (C-50); 121.1
(C-5); 136.9 (C-2); 146.7 (C-4). ESMS calcd for
C9H14N3O5 ([M+H]+): 244.0933. Found: 244.0925; Com-
pound 4e: 1H NMR (DMSO-d6, 200 MHz) d 1.89 (m, 1H,
H-30a); 2.50 (m, 1H, H-30e); 3.16 (m, 1H, H-50); 3.41 (m,
1H, H-60); 3.64 (m, 2H, H-40, H-10a); 4.30 (m, 1H, H-10e);
4.60 (t, 1H, J = 6.0 Hz, 60-OH); 4.69 (m, 1H, H-20); 5.00
(d, 1H, J = 5.8 Hz, 40-OH); 7.61 (s, 1H, NH); 7.83 (s, 1H,
NH); 7.85 (s, 1H, H-5). 13C NMR (DMSO-d6, 300 MHz) d
35.5 (C-30); 59.9 (C-20); 61.1 (C-60 and C-40); 67.8 (C-10);
83.5 (C-50); 144.6 (C-5); 156.7 (C-3); 161.0 (CO); ESMS
calcd for C9H15N4O4 ([M+H]+): 243.1093. Found
243.1079.
5. Experimental data for phosphoramidites: Compound 6a:
89% yield; 31P NMR: d 148.11, 148.26; ESMS calcd. for
C43H51N5O8P ([M+H]+): 796.3475. Found 796.3460;
Compound 6c: 77% yield; 31P NMR: d 148.11, 149.15;
ESMS calcd for C39H49N5O8P ([M+H]+): 746.3318.
Found 746.3316; Compound 6e: 38% yield; 31P NMR: d
148.49, 149.03; ESMS calcd for C39H50N6O7P ([M+H]+):
745.3478. Found 745.3478; double phosphitylated 6e
analog: 35% yield; 31P NMR: d 148.55, 148.62, 148.92,
149.09; ESMS calcd for C48H67N8O8P2 ([M+H]+):
945.4557. Found: 945.4555.
6. Van Aerschot, A.; Rozenski, J.; Loakes, D.; Pillet, N.;
Schepers, G.; Herdewijn, P. Nucleic Acid Res. 1995, 23,
4363–4370.
7. Zhou, D.; Lagoja, I. M.; Rozenski, J.; Busson, R.; Van
Aerschot, A.; Herdewijn, P. ChemBioChem. 2005, 6, 2298–
2304.
8. Loakes, D.; Brown, D. M. Nature 1994, 369, 492–493.
9. Alkylation of nitroindazole was accomplished with tolu-
enesulfonylated (S)-isopropylideneglycerol in DMF at
60 °C. 9: 1H NMR (DMSO-d6) d 3.39–3.42 (m, 2H, H-
30), 3.96 (m, 1H, H-20), 4.33–4.44 (dd, 1H, H-10a, J =
7.6 Hz and 14.0 Hz), 4.51–4.60 (dd, 1H, H-10b, J = 3.8 Hz
and 14.0 Hz), 7.79–7.84 (d, 1H, H-6, J = 9.2 Hz); 7.986–
8.04 (dd, 1H, H-7, J = 2.2 Hz and 9.6 Hz), 8.75 (s, 1H,
H-3), 8.89–8.90 (d, 1H, H-9, J = 2.2 Hz); 13C NMR
(DMSO-d6) d 57.2 (C-10), 63.6 (C-30), 70.7 (C-20), 118.1
(C-6); 119.6 (C-7); 119.9 (C-4); 120.7 (C-9), 130.5 (C-3),
142.0 (C-8); 149.2 (C-5). ESMS calcd. for C10H12N3O4
([M+H]+): 238.0828. Found: 238.0821.
Acknowledgments
The authors are indebted to Dr. Rozenski for mass
determinations, and are grateful to Chantal Biernaux
for editorial help. Financial support was obtained from
the K. U. Leuven (GOA) and the Research Foundation-
Flanders (G.0603.06).
Supplementary data
Supplementary data under the form of experimental
procedures and analytical data associated with this arti-
cle are available. Supplementary data associated with
this article can be found, in the online version, at
References and notes
1. Loakes, D. Nucleic Acids Res. 2001, 29, 2437–2447.
2. Paul, N.; Nashin, V. C.; Hoops, G.; Zhang, P.; Zhou, J.;
Bergstrom, D. E.; Davisson, V. J. Chem. Biol. 2003, 10,
815–825.
3. Hendrix, C.; Rosemeyer, H.; Verheggen, I.; Seela, F.; Van
Aerschot, A.; Herdewijn, P. Chem. Eur. J. 1997, 3, 110–
120.
4. Analytical data for the deprotected nucleoside analogs 4a:
1H NMR (DMSO-d6, 200 MHz) d 1.99 (m, 1H, H-30a);
2.51 (m, 1H, H-30e); 3.24 (m, 1H, H-50); 3.35 (m, 2H, H-
60); 3.70 (m, 1H, H-40); 3.79 (dd, 1H, J = 2.6 Hz and
12.4 Hz, H-10a); 4.04 (m, 1H, H-10e); 4.55 (t, 1H,
J = 5.9 Hz, 60-OH); 4.97 (d, 1H, J = 5.6 Hz, 40-OH);
10. Zhang, L.; Peritz, A.; Meggers, E. J. Am. Chem. Soc. 2005,
127, 4174–4175.
11. Zhang, P.; Johnson, W. T.; Klewer, D.; Paul, N.; Hoops,
G.; Davisson, V. J.; Bergstrom, D. E. Nucleic Acids Res.
1998, 26, 2208.