Structural Disorder and Aurophilic Bonding
of gold-containing materials is influenced by factors such
as temperature alteration,13 freezing of a solution containing
a gold(I) complex,14 or introduction of an organic solvent
to a solid gold(I) material, either as a vapor15-19 or as a
liquid.20 Rational design of functional materials based on
these properties is already underway in several labs: detection
of alkali metal cations has been shown to be possible through
the design of a suitable gold(I) compound with crown ether
pendants,21,22 and a sensor for volatile organic compounds
based on the vapochromism of a gold(I) material has already
been built.15
The cyano complexes of gold are of great commercial
importance, through their useage in gold extraction,23 and
are also of medicinal interest.24 Aurophilic interactions
between gold atoms in approximately linear dicyanoaurate
anions, [NCAuCN]-, are strong enough that the anions
associate into oligomers in solution25,26 and also affect the
structure of materials containing this anion.5,7-9 Combining
the abilities of both cyanide ligands and gold atoms to bridge
metals, through bidentate or metallophilic bonding, has led
to the development of new heterometallic network materials,
with a plethora of novel features. Research into coordination
polymers composed of cyanide and gold has been recently
reviewed8,9 and has continued to be an area of active
research.13,27-37 Coordination polymers of this type have
demonstrated unusually high optical birefringence;38,39 tun-
able electron lone-pair stereochemistry of Pb(II);37
and the
ability to reversibly absorb water,40,41 organic vapors,18 or
ammonia,19 the latter two causing an observable difference
in the photophysics. The heterometallic nature of these
polymers has also allowed the incorporation of metals with
accessible high-spin electronic states, providing a means to
study magnetic properties.18,28,29,31,32,34-36,40-59 Magnetic
exchange between electron spins on adjacent metal centers
has been shown to occur along diamagnetic gold(I) or
gold(III) cyanide chains.18,35,40,43,45,54,57,58 As well, materials
containing dicyanoaurate bridges and aurophilic bonds have
been investigated in regard to promising behaviors with
respect to transitions between high- and low-spin states of
neighboring metals.47,53
(33) Chen, J.-X.; Zhang, W.-H.; Tang, X.-Y.; Ren, Z.-G.; Li, H.-X.; Zhang,
Y.; Lang, J.-P. Inorg. Chem. 2006, 45, 7671–7680.
(34) Madalan, A. M.; Avarvari, N.; Andruh, M. Cryst. Growth Des. 2006,
6, 1671–1675.
(35) Katz, M. J.; Shorrock, C. J.; Batchelor, R. J.; Leznoff, D. B. Inorg.
Chem. 2006, 45, 1757–1765.
(36) Qu, J.; Gu, W.; Liu, X. J. Coord. Chem. 2008, 61, 618–626.
(37) Katz, M. J.; Michaelis, V. K.; Aguiar, P. M.; Yson, R.; Lu, H.;
Kaluarachchi, H.; Batchelor, R. J.; Schreckenbach, G.; Kroeker, S.;
Patterson, H. H.; Leznoff, D. B. Inorg. Chem. 2008, 47, 6353–6363.
(38) Katz, M. J.; Aguiar, P. M.; Batchelor, R. J.; Bokov, A. A.; Ye, Z.-
G.; Kroeker, S.; Leznoff, D. B. J. Am. Chem. Soc. 2006, 128, 3669–
3676.
(39) Katz, M. J.; Kaluarachchi, H.; Batchelor, R. J.; Bokov, A. A.; Ye,
Z.-G.; Leznoff, D. B. Angew. Chem., Int. Ed. 2007, 46, 8804–8807.
(40) Dong, W.; Zhu, L.-N.; Sun, Y.-Q.; Liang, M.; Liu, Z.-Q.; Liao, D.-
Z.; Jiang, Z.-H.; Yan, S.-P.; Cheng, P. Chem. Commun. 2003, 2544–
2545.
(41) Colacio, E.; Lloret, F.; Kiveka¨s, R.; Ruiz, J.; Sua´rez-Varela, J.;
Sundberg, M. R. Chem. Commun. 2002, 592–593.
(42) Chu, I. K.; Shek, I. P. Y.; Siu, K. W. M.; Wong, W.-T.; Zuo, J.-L.;
Lau, T.-C. New J. Chem. 2000, 24, 765–769.
(13) Assefa, Z.; Omary, M. A.; McBurnett, B. G.; Mohamed, A. A.;
Patterson, H. H.; Staples, R. J.; Fackler, J. P., Jr. Inorg. Chem. 2002,
41, 6274–6280.
(14) White-Morris, R. L.; Olmstead, M. M.; Jiang, F.; Tinti, D. S.; Balch,
A. L. J. Am. Chem. Soc. 2002, 124, 2327–2336.
(15) Baria´in, C.; Mat´ıas, I. R.; Romeo, I.; Garrido, J.; Laguna, M. Appl.
Phys. Lett. 2000, 77, 2274–2276.
(16) Rawashdeh-Omary, M. A.; Omary, M. A.; Fackler, J. P., Jr.; Galassi,
R.; Pietroni, B. R.; Burini, A. J. Am. Chem. Soc. 2001, 123, 9689–
9691.
(43) Leznoff, D. B.; Xue, B.-Y.; Patrick, B. O.; Sanchez, V.; Thompson,
R. C. Chem. Commun. 2001, 259–260.
(17) Ferna´ndez, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos,
M. E.; Pe´rez, J.; Laguna, A.; Mohamed, A. A.; Fackler, J. P., Jr.
J. Am. Chem. Soc. 2003, 125, 2022–2023.
(18) Lefebvre, J.; Batchelor, R. J.; Leznoff, D. B. J. Am. Chem. Soc. 2004,
126, 16117–16125.
(19) Katz, M. J.; Ramnial, T.; Yu, H.-Z.; Leznoff, D. B. J. Am. Chem.
Soc. 2008, 130, 10662–10673.
(20) Vickery, J. C.; Olmstead, M. M.; Fung, E. Y.; Balch, A. L. Angew.
Chem., Int. Ed. 1997, 36, 1179–1181.
(21) Yam, V. W.-W.; Li, C.-K.; Chan, C.-L. Angew. Chem., Int. Ed. 1998,
37, 2857–2859.
(22) Li, C.-K.; Lu, X.-X.; Wong, K. M.-C.; Chan, C.-L.; Zhu, N.; Yam,
V. W.-W. Inorg. Chem. 2004, 43, 7421–7430.
(23) La Brooy, S. R.; Linge, H. G.; Walker, G. S. Miner. Eng. 1994, 7,
1213–1241.
(24) Ahmad, S. Coord. Chem. ReV. 2004, 248, 231–243.
(25) Rawashdeh-Omary, M. A.; Omary, M. A.; Patterson, H. H. J. Am.
Chem. Soc. 2000, 122, 10371–10380.
(44) Leznoff, D. B.; Xue, B.-Y.; Stevens, C. L.; Storr, A.; Thompson,
R. C.; Patrick, B. O. Polyhedron 2001, 20, 1247–1254.
(45) Leznoff, D. B.; Xue, B.-Y.; Batchelor, R. J.; Einstein, F. W. B.;
Patrick, B. O. Inorg. Chem. 2001, 40, 6026–6034.
(46) Shorrock, C. J.; Xue, B.-Y.; Kim, P. B.; Batchelor, R. J.; Patrick,
B. O.; Leznoff, D. B. Inorg. Chem. 2002, 41, 6743–6753.
(47) Niel, V.; Thompson, A. L.; Muñoz, M. C.; Galet, A.; Goeta, A. E.;
Real, J. A. Angew. Chem., Int. Ed. 2003, 42, 3760–3763.
(48) Colacio, E.; Lloret, F.; Kiveka¨s, R.; Sua´rez-Varela, J.; Sundberg,
M. R.; Uggla, R. Inorg. Chem. 2003, 42, 560–565.
(49) Shorrock, C. J.; Jong, H.; Batchelor, R. J.; Leznoff, D. B. Inorg.
Chem. 2003, 42, 3917–3924.
(50) Stender, M.; White-Morris, R. L.; Olmstead, M. M.; Balch, A. L.
Inorg. Chem. 2003, 42, 4504–4506.
(51) Vitoria, P.; Muga, I.; Gutie´rrez-Zorrilla, J. M.; Luque, A.; Roma´n,
P.; Lezama, L.; Zu´niga, F. J.; Beitia, J. I. Inorg. Chem. 2003, 42,
960–969.
(52) Zhou, H.-B.; Wang, S.-P.; Dong, W.; Liu, Z.-Q.; Wang, Q.-L.; Liao,
D.-Z.; Jiang, Z.-H.; Yan, S.-P.; Cheng, P. Inorg. Chem. 2004, 43,
4552–4554.
(53) Galet, A.; Muñoz, M. C.; Mart´ınez, V.; Real, J. A. Chem. Commun.
2004, 2268–2269.
(26) Rawashdeh-Omary, M. A.; Omary, M. A.; Patterson, H. H.; Fackler,
J. P., Jr. J. Am. Chem. Soc. 2001, 123, 11237–11247.
(27) Che, C.-M.; Wong, W.-T.; Lai, T.-F.; Kwong, H.-L. J. Chem. Soc.,
Chem. Commun. 1989, 243–244.
(28) Dong, W.; Sun, Y.-Q.; Yu, B.; Zhou, H.-B.; Song, H.-B.; Liu, Z.-
Q.; Wang, Q.-M.; Liao, D.-Z.; Jiang, Z.-H.; Yan, S.-P.; Cheng, P.
New J. Chem. 2004, 28, 1347–1351.
(29) Paraschiv, C.; Andruh, M.; Ferlay, S.; Hosseini, M. W.; Kyritsakas,
N.; Planeix, J.-M.; Stanica, N. Dalton Trans. 2005, 1195–1202.
(30) Siemeling, U.; Rother, D.; Bruhn, C.; Fink, H.; Weidner, T.; Tra¨ger,
F.; Rothenberger, A.; Fenske, D.; Priebe, A.; Maurer, J.; Winter, R.
J. Am. Chem. Soc. 2005, 127, 1102–1103.
(54) Leznoff, D. B.; Shorrock, C. J.; Batchelor, R. J. Gold Bull. 2007,
40, 36–39.
(55) Lefebvre, J.; Callaghan, F.; Katz, M. J.; Sonier, J. E.; Leznoff, D. B.
Chem.sEur. J. 2006, 12, 6748–6761.
(56) Geisheimer, A. R.; Katz, M. J.; Batchelor, R. J.; Leznoff, D. B.
CrystEngComm 2007, 9, 1078–1083.
(57) Katz, M. J.; Kaluarachchi, H.; Batchelor, R. J.; Schatte, G.; Leznoff,
D. B. Cryst. Growth Des. 2007, 7, 1946–1948.
(31) Xu, G.-F.; Liu, Z.-Q.; Zhou, H.-B.; Guo, Y.; Liao, D.-Z. Aust.
J. Chem. 2006, 59, 640–646.
(32) Zhou, H.-B.; Wang, S.-P.; Liu, Z.-Q.; Liao, D.-Z.; Jiang, Z.-H.; Yan,
S.-P.; Cheng, P. Inorg. Chim. Acta 2006, 359, 533–540.
(58) Lefebvre, J.; Chartrand, D.; Leznoff, D. B. Polyhedron 2007, 26,
2189–2199.
(59) Lefebvre, J.; Trudel, S.; Hill, R. H.; Leznoff, D. B. Chem.sEur. J.
2008, 14, 7156–7167.
Inorganic Chemistry, Vol. 48, No. 5, 2009 2317