4452
L. Cai et al. / Tetrahedron Letters 47 (2006) 4449–4452
Table 5. The palladium-catalyzed coupling of aryl bromides with thiols or tin-thiolates (Scheme 2 with R3 = R4 = H, R5 = Me, R6 = H, R7 = Me,
X = Br)
Entry
R
Ligand
Method
Conversion (%)
Ratio of substitution:reduction
1
2
3
4
5
6
7
R1 = SnMe3, R2 = CH2CH2OH
R1 = SnMe3, R2 = CH2CH2OH
R1 = SnMe3, R2 = CH2CH2OH
R1 = SnMe3, R2 = CH2CH2OH
R1 = SnMe3, R2 = CH2CONH2
R1 = H, R2 = CH2CH2OH
BINAP
BINAP-Tol
DPPF
DiPPF
DiPPF
a
b
c
d
e
f, g
h
6
16
0.4
14
26
100
26
1:0
1:0
1:0
1:0
1:0
1:0.06
1:0.67
DiPPF
DiPPF
R1 = H, R2 = CH2CONH2
Note: the ligand structures are as shown in Figure 2; R, substituents shown in Scheme 2. General conditions for tin-thiolate reaction: 150 °C, 10 min,
300 W, 300 psi, substrate:thiolate = 1:1 in toluene; a, 0.1 equiv Pd2(dba)3 and 0.1 equiv L; b, 0.2 equiv Pd2(dba)3 and 0.2 equiv L; c, 0.1 equiv
Pd2(dba)3 and 0.1 equiv L; d, 0.2 equiv Pd2(dba)3 and 0.4 equiv L; e, 0.2 equiv Pd2(dba)3 and 0.4 equiv L. General conditions for thiol reaction:
150 °C, 10 min, 300 W, 300 psi, 11.2 equiv t-BuOK; f, 0.2 equiv Pd(OAc)2 and 0.23 equiv L in dioxane; g, 0.2 equiv Pd2(dba)3 and 0.23 equiv L in
toluene; h, 0.2 equiv Pd2(dba)3 and 0.23 equiv L in dioxane.
Table 6. Thioethers synthesized by palladium-based catalysis (Scheme
NIH, NIMH. Y.-Y.P. is grateful to the support of the
National Science Foundation of China (NSFC Nos.
20342007 and 20462003).
2 with R1 = SnMe3, R3 = R4 = H, R7 = Me)
X
R5
R6
R2
M
Yield (%)a
I
I
I
I
I
Br
Br
H
H
H
H
H
Me
Me
H
Me
H
Me
Me
H
CH2CONH2
CH2CONH2
CH2CH2OH
CH2CH2OH
CH2C6H4OCH3
CH2CONH2
CH2CH2OH
C1
C2
C1
C2
C3
C4
C4
78
85
91
89
85b
69
69
References and notes
1. Dickens, M. J.; Gilday, J. P.; Mowlem, T. J.; Widdowson,
D. A. Tetrahedron 1991, 47, 8621–8634.
2. Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205–
3220.
3. Baranano, D.; Mann, G.; Hartwig, J. F. Curr. Org. Chem.
1997, 1, 187–305.
4. Fernandez-Rodriguez, M. A.; Shen, Q.; Hartwig, J. F. J.
Am. Chem. Soc. 2006, 128, 2180–2181.
5. Baranano, D.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117,
2937–2938.
H
Note: general conditions: 150 °C, 10 min, 300 W, 300 psi, sub-
strate:thiolate = 1:1–1.5 in toluene; L = DiPPF; method C1, 0.1 equiv
Pd2(dba)3 and 0.1 equiv L; method C2, 0.2 equiv Pd2(dba)3 and
0.4 equiv L; method C3, 0.2 equiv Pd2(dba)3 and 0.2 equiv L; method
C4, 0.2 equiv Pd2(dba)3 and 0.8 equiv L.
a Isolated yield of the substitution product from reverse phase HPLC.
b When B2O3 was used with the thiol instead of tin-thiolate, no reac-
tion was observed.
6. Louie, J.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117,
11598–11599.
7. Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852–860.
8. Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397–
7403.
9. Li, G. Y. J. Org. Chem. 2002, 67, 3643–3650.
10. Li, G. Y.; Zheng, G.; Noonan, A. F. J. Org. Chem. 2001,
66, 8677–8681.
11. Li, G. Y. Angew. Chem., Int. Ed. 2001, 40, 1513–1516.
12. Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069–
3073.
13. Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587–4590.
14. Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517–
3520.
Table 7. Thioethers synthesized by palladium-based catalysis (Scheme
2 with R1 = SnMe3, R3R4 = CH2CH2, R5 = Br, R6 = Me, R7 = Ac)
X
R2
Yield (%)a
I
I
CH2CONH2
CH2CH2OH
60
94
Note: general conditions: 150 °C, 10 min, 300 W, 300 psi, sub-
strate:thiolate = 1:1, 0.1 equiv Pd2(dba)3, 0.1 equiv DiPPF in toluene.
a Isolated yield of the substitution product from reverse phase HPLC.
In summary, we have developed a method with micro-
wave heating for the rapid, selective and efficient substi-
tution of bromo or iodo groups in aryl halides by tin-
thiolates. This procedure is applicable to substrates with
an easily reducible iodo group, in either the presence or
absence of a bromo group. Lower reactivity and higher
selectivity were observed as compared with those using
thiols as reagents. The corresponding reactions under
conventional heating did not generate any appreciable
amount of products except for those without any hetero-
atoms in the substrates (no data shown).
15. Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org.
Lett. 2002, 4, 2803–2806.
16. Hickman, R. J. S.; Christie, B. J.; Guy, R. W.; White, T. J.
Aust. J. Chem. 1985, 38, 899–904.
17. Palomo, C.; Oiarbide, M.; Lopez, R.; Gomez-Bengoa, E.
Tetrahedron Lett. 2000, 41, 1283–1286.
18. Wu, Y. J.; He, H. Synlett 2003, 1789–1790.
19. Cai, L.; Chin, F. T.; Pike, V. W.; Toyama, H.; Liow, J. S.;
Zoghbi, S. S.; Modell, K.; Briard, E.; Shetty, H. U.;
Sinclair, K.; Donohue, S.; Tipre, D.; Kung, M. P.;
Dagostin, C.; Widdowson, D. A.; Green, M.; Gao, W.;
Herman, M. M.; Ichise, M.; Innis, R. B. J. Med. Chem.
2004, 47, 2208–2218.
20. Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L.
Acc. Chem. Res. 1998, 31, 805–818.
Acknowledgements
21. Ishiyama, T.; Mori, M.; Suzuki, A.; Miyaura, N. J.
Organomet. Chem. 1996, 525, 225–231.
22. Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029–
3069.
We thank Drs. Shuiyu Lu and Umesha Shetty for
experimental assistance. This research was supported
in part by the Intramural Research Program of the