1
5
propensity.18-23 Three, the amino acid needs to be readily
synthesized in enantiomerically pure form. Four, the amino
acid needs to be readily incorporated into peptides through
solid-phase peptide synthesis. Toward fulfilling these needs,
herein we report the gram scale stereoselective synthesis of
both Hfl and a novel fluorinated amino acid (S)-5,5,5′,5′-
tetrafluoroleucine (Qfl, Figure 1), the incorporation of Qfl
into peptides, and the helix propensity of Qfl.
with Hfl, suggesting the need to develop novel fluoro-amino
acids with more favorable helix propensities compared to
Hfl.
Scheme 1. Chemoenzymatic Synthesis of Hfl and Qfl.
The difluoromethyl group (CF
the development of bioactive compounds.
has been used as a bioisostere for the hydroxyl group because
2
H) has been exploited in
2
4-31
This group
32
of similar hydrogen bond donating capability. Nonetheless,
the CF H group was incorporated as difluoromethionine into
the interior of a protein to probe the environment near the
2
3
3
fluorines, demonstrating the compatibility of CF
2
H with
the hydrophobic core of proteins. If two CF H groups were
2
introduced to give Qfl, the overall shape of Qfl would be
similar to Leu without introducing any additional stereo-
center. Furthermore, the size of Qfl would be in between
that of Leu and Hfl, both of which are compatible with helical
3
,6,8,9
proteins.
We synthesized Hfl and Qfl on gram scale using a
15
chemoenzymatic approach (Scheme 1). The corresponding
acetones were reacted with the ylide in a Wittig reaction to
give the unsaturated pyruvate esters (1a and 1b). For
synthesizing 1a, we consistently obtained the side product
An ideal fluoro-amino acid substitute for Leu should have
the following characteristics. One, the overall shape of the
amino acid needs to be similar to Leu, because Koksch has
shown that the shape is important for substituting Leu
residues in coiled coils.16,17 Two, the helix propensity needs
to be similar to Leu, or at least needs to be more favorable
than Hfl. Unfortunately, the design of fluoro-amino acids
5
(g30%) (Figure 2), despite performing the reaction
1
5
with reasonable helix propensity remains difficult despite
the extensive knowledge of the main determinants for helix
(
15) Chiu, H.-P.; Suzuki, Y.; Gullickson, D.; Ahmad, R.; Kokona, B.;
Fairman, R.; Cheng, R. P. J. Am. Chem. Soc. 2006, 128, 15556-15557.
16) J a¨ ckel, C.; Salwiczek, M.; Koksch, B. Angew. Chem., Int. Ed 2006,
5, 4198-4203.
17) J a¨ ckel, C.; Seufert, W.; Thust, S.; Koksch, B. ChemBioChem 2004,
, 717-720.
18) Creamer, T. P.; Rose, G. D. Proc. Natl. Acad. Sci. U.S.A. 1992, 89,
(
Figure 2. Chemical structures of two side products in the
chemoenzymatic synthesis of Hfl.
4
5
5
(
(
937-5941.
according to literature procedures (1 equiv of hexfluoroac-
(
19) Yang, A.-S.; Honig, B. J. Mol. Biol. 1995, 252, 351-365.
(20) Luo, P.; Baldwin, R. L. Proc. Natl. Acad. Sci. U.S.A. 1999, 96,
etone, 4.0 M ylide in tetrahydrofuran, 55 °C, vacuum
4
930-4935.
21) Garc ´ı a, A. E.; Sanbonmatsu, K. Y. Proc. Natl. Acad. Sci. U.S.A.
002, 99, 2782-2787.
22) Vila, J. A.; Ripoll, D. R.; Scheraga, H. A. Proc. Natl. Acad. Sci.
U.S.A. 2000, 97, 13075-13079.
23) Avbelj, F.; Luo, P.; Baldwin, R. L. Proc. Natl. Acad. Sci. U.S.A.
12
distillation). Hexafluoroacetone gas and hexafluoroacetone
(
2
hexahydrate gave virtually the same results. To minimize
this side product, we changed the equivalents of hexafluo-
roacetone, concentration of the ylide, solvent, and reaction
temperature. By using 1.5 equiv of hexafluoroacetone under
dilute conditions (0.4 M ylide) in benzene at 40 °C, the
desired product was obtained with >99% purity upon
vacuum distillation with 65% isolated yield. Either more
equivalents of hexafluoroacetone or lower reaction temper-
atures resulted in a slight drop in isolated yield, whereas
(
(
2
1
1
000, 97, 10786-10791.
(
24) Wang, E. A.; Walsh, C. Biochemistry 1981, 20, 7539-7546.
(25) Bey, P.; Gerhart, F.; van Dorsselaer, V.; Danzin, C. J. Med. Chem.
983, 26, 1551-1556.
(
(
26) Imperiali, B.; Abeles, R. H. Biochemistry 1986, 25, 3760-3767.
27) Yamazaki, T.; Haga, J.; Kitazume, T. Bioorg. Med. Chem. Lett.
991, 1, 271-276.
28) Pu, Y. M.; Torok, D. S.; Ziffer, H.; Pan, X.-Q.; Meshnick, S. R. J.
Med. Chem. 1995, 38, 4120-4124.
29) Narjes, F.; Koehler, K. F.; Koch, U.; Gerlach, B.; Colarusso, S.;
(
(
Steink u¨ hler, C.; Brunetti, M.; Altamura, S.; De Francesco, R.; Matassa, V.
(33) Vaughan, M. D.; Cleve, P.; Robinson, V.; Duewel, H. S.; Honek,
J. F. J. Am. Chem. Soc. 1999, 121, 8475-8478.
G. Bioorg. Med. Chem. Lett. 2002, 12, 701-704.
(30) Xu, Y.; Qian, L.; Pontsler, A. V.; McIntyre, T. M.; Prestwich, G.
(34) Blaszczak, L. C.; McMurry, J. E. J. Org. Chem. 1974, 39, 258-
D. Tetrahedron 2004, 60, 43-49.
31) Peleg, S.; Petersen, K. S.; Suh, B. C.; Dolan, P.; Agoston, E. S.;
Kensler, T. W.; Posner, G. H. J. Med. Chem. 2006, 49, 7513-7517.
32) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626-
631.
259.
(
(35) Asano, Y.; Yamada, A.; Kato, Y.; Yamaguchi, K.; Hibino, Y.; Hirai,
K.; Kondo, K. J. Org. Chem. 1990, 55, 5567-5571.
(36) Krix, G.; Bommarius, A. S.; Drauz, K.; Kottenhahn, M.; Schwarm,
M.; Kula, M.-R. J. Biotechnol. 1997, 53, 29-39.
(
1
5518
Org. Lett., Vol. 9, No. 26, 2007