Synthesis and Applications of Isoquinolinium Salts
COMMUNICATION
0113399A1, 2005; b) N. I. Alun, P. K. Mark, B. P Allen, Int. Patent,
WO 2006/067444A1, 2006; c) M. Barrie, W. Paul, Int. Patent, WO
2007/149031A1, 2007; d) L. J. Adams, Int. Patent, WO 2004/
108682A2, 2004.
of isoquinolinone-based natural products is in progress.
Experimental Section
Procedure for the preparation of isoquinolinium salt 3a: A screw-cap
sealed tube fitted with
(0.20 mmol) and p-toluidine (0.20 mmol) was evacuated and purged with
nitrogen gas three times. The tube was charged with [Ni(cod)2]
(0.011 mmol, 3.0 mg) and P(o-Tol)3 (0.023 mmol, 7.0 mg) inside a glove
a septum containing 2-iodobenzaldehyde
AHCTUNGTRENNUNG
AHCTUNGTRENNUNG
[5] a) D. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil, Y. Yamamoto,
45, 3822–3825; d) S. Obika, H. Kono, Y. Yasui, R. Yanda, Y. Take-
box. The tube was then kept under an atmosphere of nitrogen on a dual-
manifold Schlenk line. Alkyne 2a (0.25 mmol) was dissolved in acetoni-
trile (3.0 mL) and was added to the stirred mixture through a syringe.
The septum was quickly exchanged for a screw cap and the reaction mix-
ture was stirred at 808C for 1.5 h. At the end of the reaction, the reaction
mixture was diluted with CH2Cl2 and then filtered through a silica-gel
pad
by
using
methanol
as
the
eluent
(~20 mL). The combined filtrate was concentrated in vacuo and the resi-
due was carefully washed with ethyl acetate and hexane to afford the de-
sired pure product 3a in 92% yield. 1H NMR (500 MHz, CDCl3, 25 8C,
TMS): d=2.19 (s, 3H), 6.94 (d, J=7.5 Hz, 2H), 6.97 (d, J=6.5 Hz, 1H),
7.03 (d, J=7.5 Hz, 2H), 7.11 (d, 7.0 Hz, 2H), 7.22–7.24 (m, 5H), 7.52 (d,
J=7.5 Hz, 2H), 7.63 (d, J=8.0 Hz, 1H), 7.87 (t, J=7.0 Hz, 1H), 7.97 (t,
J=7.5 Hz, 1H), 8.77 (d, J=7.5 Hz, 1H), 10.16 ppm (s, 1H); 13C NMR
(125 MHz, CDCl3, 25 8C, TMS): d=21.0, 126.3, 126.4, 126.8, 127.6, 128.1,
128.4, 128.9, 129.7, 130.1, 130.8, 130.9, 131.1, 131.7, 133.0, 137.4, 138.6,
139.1, 139.4, 140.4, 144.1, 149.8 ppm; IR (KBr): u¯ =1250, 1440, 1718,
Thirunavukkarasu, K. Parthasarathy, C.-H. Cheng, Angew. Chem.
3169; Oxanickelacycles: d) K. K. D. Amarasinghe, S. K. Chowdhury,
2933, 2959 cmÀ1
.
Acknowledgements
42, 1364–1367; e) S. J. Patel, T. F. Jamison, Angew. Chem. 2003, 115,
4031–4034; Angew. Chem. Int. Ed. 2004, 43, 3941–3944.
We thank the National Science Council of Republic of China (NSC 96-
2113-M-007-020-MY3) for support of this research.
Keywords: aza-nickelacycles
reductive coupling · zinc
· isoquinolines · nickel ·
[10] a) D. Gnecco, C. Marazano, R. G. Enriquez, J. L. Teran, M. R. San-
[11] Zinc reagents: a) P. Knockel, P. Jones, Organozinc Reagents, Oxford
University Press, New York, 1999; b) H. Stadtmꢁller, A. Vaupel,
1204–1220; c) A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Kno-
[1] a) B. D. Krane, M. O. Fagbule, M. Shamma, J. Nat. Prod. 1984, 47,
1–43; b) B. Gerhard, T. Gulder, U. Hentschel, F. Meyer, H. Moll, J.
Morschhauser, D. V. A. Ponte-Sucre, W. Ziebuhr; A. Stich, R. Brun,
W. E. G. Muller, V. Mudogu, Int. Patent, WO 2008/037482A1, 2008;
c) M. S. Cushman, A. S. Ioanoviciu, Y. G. Pommier, WO 2005/
089294A2, 2005; d) N-laurylisoquinolinium bromide, hexadecame-
thylenediisoquinolium dichloride, and quinapril are popular drug
molecules.
[2] Drug applications: a) R. M. Scarborough, K. A. Kane-Maguire,
C. K. Marlowe, M. S. Smyth, X. Zhang, US Patent, US 2005/
Received: May 22, 2009
Published online: September 11, 2009
Chem. Eur. J. 2009, 15, 10727 – 10731
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
10731