4490 J. Phys. Chem., Vol. 100, No. 11, 1996
Pimienta et al.
(14) Favaro, G.; Malatesta, V.; Mazzucato, U.; Ottavi, G.; Romani, A.
J. Photochem. Photobiol., A: Chem. 1995, 87 (3), 235-43.
(15) Ba¨r, R.; Gauglitz, G. J. Photochem. Photobiol., A: Chem. 1989,
46, 15-26.
must be carried out, but at two different irradiation wavelengths.
This provides sufficient information assuming that the quantum
yields are not modified by the change in irradiation wavelength.
This last hypothesis is generally justified if the two irradiation
wavelengths lie in the same absorption bands for both A and
B. The molar extinction coefficient of the unstable photoisomer
B is obtained as described above for the system without
photochemical back-isomerization.
(16) Polster, J.; Mauser, H. J. Photochem. Photobiol., A: Chem. 1988,
43, 109-18.
(17) Bertelson, R. C. In Photochromism; Brown, G. H., Ed.; J. Wiley
and Sons Inc.: New York, 1971; Chapter III.
(18) Guglielmetti, R. In Photochromism, Molecules and Systems; Du¨rr,
H., Bouas-Laurent, H., Eds.; Elsevier: Amsterdam, 1990; Chapters 8 and
23.
(19) Samat, A.; de Keukeleire, D.; Guglielmetti, R. Bull. Soc. Chim.
References and Notes
Belg. 1991, 100, 679-700.
(20) Kellmann, A.; Lindquist, L.; Monti, S.; Tfibel, F.; Guglielmetti,
R. J. Photochem. 1985, 28, 547-58.
(1) Crano, J. C.; Kwak, W. S.; Welch, C. N. Applied Photochromic
Polymer Systems; Mc Ardle, C. B., Ed.; Blackie: New York, 1992; Chapter
2.
(2) Zimmerman, G.; Chow, L-Y.; Paik, U-J. J. Am. Chem. Soc. 1958,
80, 3528-31.
(3) Fisher, E. J. Phys. Chem. 1967, 71 (11), 3704-6.
(4) Wyman, G. M. Mol. Photochem. 1974, 6, 81-90.
(5) Wyman, G. M.; Brode, W. R. J. Am. Chem. Soc. 1951, 73, 1487-
93.
(6) Blanc, J.; Ross, D. L. J. Phys. Chem. 1968, 72, 2817-24.
(7) Wyman, G. M.; Zarnegar, B. M. J. Phys. Chem. 1973, 77, 831-7.
(8) The lifetime τ must be sufficiently long for the reaction mixture to
be made macroscopically homogeneous by the stirring system. In general,
τ ≈ 10 s is the limiting value below which the reaction mixture is not
adequately stirred. For the short-lived photomerocyanines (10-10 < τ <
10-1 s), laser or flash photolysis are the methods of choice for kinetic
analysis, but only of the thermal back-isomerization reactions. See: (a)
Lenoble, C.; Becker, R. S. J. Phys. Chem. 1986, 90, 62-5. (b) Tamai, N.;
Masuhara, H. Chem. Phys. Lett. 1992, 191 (1-2), 189-94. (c) Zhang, J.
Z.; Schwartz, B. J.; King, J. C.; Harris, C. B. J. Am. Chem. Soc. 1992, 114,
10921-7. For the longer-lived forms (τ > 10 s), quantum yields, rate
constants, and the spectrum of the most stable photomerocyanine can be
obtained under continuous irradiation.
(21) Ernsting, N. K.; Arthen-Engeland, T. J. Phys. Chem. 1991, 97,
5502-9.
(22) Baillet, G.; Campredon, M.; Guglielmetti, R.; Giusti, G.; Aubert,
C. J. Photochem. Photobiol., A: Chem. 1994, 83, 147-53.
(23) Baillet, G.; Giusti, G.; Guglielmetti, R. J. Photochem. Photobiol.,
A: Chem. 1993, 70, 157-61.
(24) Baillet, G.; Lokshine, V.; Guglielmetti, R.; Giusti, G. C. R. Acad.
Sci., Ser. II 1994, 319, 41-6.
(25) Salemi, C.; Giusti, G.; Guglielmetti, R. J. Photochem. Photobiol.,
A: Chem. 1995, 86, 247-52.
(26) Baillet, G.; Guglielmetti, R.; Giusti, G.; Mol. Cryst. Liq. Cryst. 1994,
246, 287-90.
(27) (a) Samat, A. Thesis, Brest (France), 1976. (b) Samat, A.; Kyster,
J.; Garnier, F.; Metzger, J.; Guglielmetti, R. Bull. Soc. Chim. Fr. 1975,
2627-33.
(28) Borderie, B.; Lavabre, D.; Micheau, J. C.; Laplante, J. P. J. Phys.
Chem. 1992, 96, 2953-61.
(29) Pimienta, V.; Le´vy, G.; Lavabre, D.; Laplante, J. P.; Micheau, J.
C. Physica A 1992, 188, 99-112.
(30) If the photokinetic curve is close to first order, Abs′ changes little
during irradiation and F is practically constant. On the other hand, if the
photokinetic curve departs from first order, F may sometimes (if the change
is sufficient) be estimated by fitting this curve alone without having to
monitor the irradiation wavelength. See: Misra, G. P.; Lavabre, D.;
Micheau, J. C. J. Photochem. Photobiol., A: Chem. 1994, 80, 251-56.
(31) This approach is akin to the temperature variation method used in
the study of thermochromic equilibria. See: Tan-Sien-Hee, L.; Lavabre,
D.; Levy, G.; Micheau, J. C. New J. Chem. 1989, 13, 227-33.
(9) Rau, H.; Greiner, G.; Gauglitz, G.; Meir, H. J. Phys. Chem. 1990,
94, 6523-4.
(10) Gre´goire, F.; Lavabre, D.; Micheau, J. C.; Gimenez, M.; Laplante,
J. P. J. Photochem. 1985, 28, 261-71.
(11) Wilkinson, F.; Hobley, J.; Naftaly, M. J. Chem. Soc., Faraday
Trans. 1990, 88, 1511-17.
(12) Rau, H. EPA Newslett. 1991, 41, March, 40-55.
(13) Gauglitz, G.; Scheerer, E. J. Photochem. Photobiol., A: Chem. 1993,
71, 205-12.
JP9531117