12
P.A. Khalaf Alla et al.
the biological significance of di- and trinuclear platinum(II) complexes having potent anti-
tumor activity [36]. In this study, [Pd(en)(H2O)2]2+ forms the dihydroxo-bridged dimer (20-
2), as reported for most Pd-diamine complexes. The stability constant of the Pd(en)-inosine
complex is lower than that for the Pd(pic)–inosine complex, where pic = 2-picolylamine
[18]. This is attributed to the π-acceptor properties of the pyridyl group of pic, which leads
to an increase in the electrophilicity of Pd(II) and consequently increases the stability con-
stants of its complex. Therefore, the structure of the diamine has an effect on the stability
of the DNA adduct.
The formation of the binuclear complex through bridging with 4,4′-bipiperidine decreases
the electrophilicity of the PdII centers. This in turn leads to an increase in the pKa of the
diaqua-bridged complex and a decrease in the stability constants of the binuclear DNA
complexes. The Bip bridge does not allow the two Pd(en) units to communicate electroni-
cally with each other. This is evidenced by the similarity of the pKa values of the diaqua-
bridged complex.
It is interesting to compare the results of this study with those of the previously reported
results for similar binuclear Pd(II) complexes. The stability constant of the binuclear inosine
complex formed with [(H2O)(NH3)2Pd(Bip)Pd(NH3)2(H2O)]4+ is log10 K = 5.51, as
reported before [20], in good agreement with that of the binuclear inosine complex formed
with [(H2O)(en)Pd(Bip)Pd(en)(H2O)]4+ (log10 K = 5.40), as reported in the present study.
Disclosure statement
No potential conflict of interest was reported by the authors.
References
[1] B. Rosenberg, L. Van Camp, T. Krigas. Nature, 205, 698 (1965).
[2] C. Gao, T. Wang, J. Chen, Y. Zhang, B. Yang, S. Gou. J. Coord. Chem., 67, 2195 (2014).
[3] B.P. Espósito, R. Najjar. Coord. Chem. Rev., 232, 137 (2002).
[4] E. Wong, C.M. Giandomenico. Chem. Rev., 99, 2451 (1999).
[5] G. Enos, A. Mambanda, D. Jaganyi. J. Coord. Chem., 66, 4280 (2013).
[6] M. Chipangura, A. Mambanda, D. Jaganyi. J. Coord. Chem., 67, 2048 (2014).
[7] N. Farrell. Comments Inorg. Chem., 16, 373 (1995).
[8] J. Reedijk. Spec. Feature Perspect., 100, 3611 (2003).
[9] V. Brabec, J. Kašpárková, O. Vrána, O. Nováková, J.W. Cox, Y. Qu, N. Farrell. Biochemistry, 38, 6781
(1999).
[10] S. Komeda, M. Lutz, A.L. Spek, M. Chikuma, J. Reedijk. Inorg. Chem., 39, 4230 (2000).
[11] S. Komeda, M. Lutz, A.L. Spek, Y. Yamanaka, T. Sato, M. Chikuma, J. Reedijk. J. Am. Chem. Soc., 124,
4738 (2002).
[12] Q. Liu, Y. Qu, R. Van Antwerpen, N. Farrell. Biochemistry, 45, 4248 (2006).
[13] M.R. Shehata, M.M. Shoukry, R. van Eldik. Eur. J. Inorg. Chem., 3912 (2009).
[14] T. Soldatovic, M.M. Shoukry, R. Puchta, Z.D. Bugarcic, R. van Eldik. Eur. J. Inorg. Chem., 2261 (2009).
[15] M.R. Shehata, M.M. Shoukry, F.M. Nasr, R. van Eldik. Dalton Trans., 779 (2008).
[16] M.M. Shoukry, R. van Eldik. J. Chem. Soc. Dalton Trans., 2673 (1996).
[17] M.M.A. Mohamed, M.M. Shoukry. Polyhedron, 20, 343 (2001).
[18] A.A. El-Sherif, M.M. Shoukry, R. van Eldik. J. Chem. Soc. Dalton Trans., 1425 (2003).
[19] T. Rau, M.M. Shoukry, R. van Eldik. Inorg. Chem., 36, 1454 (1997).
[20] M.M.A. Mohamed, M.M. Shoukry. J. Sol. Chem., 40, 2023 (2003).
[21] M.M.A. Mohamed, M.M. Shoukry. J. Coord. Chem., 64, 2667 (2011).
[22] M.M.A. Mohamed, I. Weber, R. Puchta, M.M. Shoukry, R. van Eldik. J. Coord. Chem., 66, 3469 (2013).
[23] R.G. Bates. Determination of pH: Theory and Practice, 2nd Edn, Wiley Interscience, New York (1975).
[24] M.M. Shoukry, W.M. Hosny, M.M. Khalil. Transition Met. Chem., 20, 252 (1995).