LETTER
One-Step Preparation of 3-Arylpropionic Acids
2519
(Scheme 3): transmetallation of arylboronic acid to
[Rh(I)]OH furnishes an arylrhodium(I) complex,12 which
after coordination of acrylic acid followed by insertion
into the Rh–Ar bond would provide the rhodium enolate,
which may be either O- or C-bound. Hydrolysis of this
rhodium enolate with water would release the desired 3-
arylpropionic acid and explains the a-deuterium incorpo-
ration upon use of D2O. The fact that we observed high
yield of the 1,4-addition product compared to a competing
protodeborylation of the arylboronic acid under the exper-
imental conditions applied, suggests that the insertion of
acrylic acid into the Rh–Ar bond is faster than the oxida-
tive addition of the carboxylic acid to the rhodium center
followed by the protolytic cleavage of the rhodium–aryl
bond.
Acknowledgment
This work was supported by the DFG, the International Research
Training Group ‘Catalysts and Catalytic Reactions for Organic Syn-
thesis’ (IRTG 1038), the Fonds der Chemischen Industrie, the
Krupp Foundation and the Humboldt Foundation (postdoctoral fel-
lowship to N.R.V.). We thank Umicore, BASF and Wacker for ge-
nerous gifts of chemicals.
References and Notes
(1) (a) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169.
(b) Hayashi, K.; Yamasaki, K. Chem. Rev. 2003, 103, 2829.
(c) Evans, P. A. Modern Rhodium-Catalyzed Organic
Reactions; Wiley-VCH: Weinheim, 2005. (d) Skucas, E.;
Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res.
2007, 40, 1394. (e) Miura, T.; Murakami, M. Chem.
Commun. 2007, 217. (f) Lewis, J. C.; Bergman, R. G.;
Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013. (g) Colby,
D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110,
624. (h) Edwards, H. J.; Hargrave, J. D.; Penrose, S. D.;
Frost, C. G. Chem. Soc. Rev. 2010, 39, 2093.
(2) (a) Sakai, M.; Hayashi, M.; Miyaura, N. Organometallics
1997, 16, 4229. (b) Takaya, Y.; Ogasawara, M.; Hayashi,
T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120,
5579. (c) Ghosh, A. K.; Bilcer, G.; Schiltz, G. Synthesis
2001, 2203. (d) List, B.; Castello, C. Synlett 2001, 1687.
(e) Reetz, M. T.; Moulin, D.; Gosberg, A. Org. Lett. 2001, 3,
4083.
O
[Rh(cod)OH]2
B(OH)2
O
(2.5 mol%)
OH
+
D2O (0.12 M)
75 °C, 16 h
(95%)
D
OH
Scheme 2 1,4-Addition of phenylboronic acid to acrylic acid in
D2O
OH
(3) (a) Sakuma, S.; Sakai, M.; Itooka, N.; Miyaura, N. J. Org.
Chem. 2000, 65, 5951. (b) Chapman, C. J.; Frost, C. G. Adv.
Synth. Catal. 2003, 345, 353.
Ar—B(OH)2
Ar
O
[Rh]–OH
(4) Paquin, J.-F.; Defieber, C.; Stephenson, C. R. J.; Carreira,
H2O
E. M. J. Am. Chem. Soc. 2005, 127, 10850.
(5) (a) Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem.
2001, 66, 6852. (b) Sakuma, S.; Miyaura, N. J. Org. Chem.
2001, 66, 8944.
H2O
[Rh]
B(OH)3
OH
OH
O
(6) Hayashi, T.; Senda, T.; Takaya, M.; Ogasawara, M. J. Am.
[Rh]–Ar
Chem. Soc. 1999, 121, 11591.
Ar
O
Ar
(7) Mauleon, P.; Carretero, J. C. Org. Lett. 2004, 6, 3195.
(8) Tsui, G. C.; Menard, F.; Lautens, M. Org. Lett. 2010, 12,
2456.
[Rh]
(9) Tsui, G. C.; Lautens, M. Angew. Chem. Int. Ed. 2010, 49,
8939.
(10) Sasaki, K.; Hayashi, T. Angew. Chem. Int. Ed. 2010, 49,
8145.
O
OH
Scheme 3 Proposed reaction mechanism for the rhodium-catalyzed
1,4-addition of arylboronic acids to acrylic acid
(11) (a) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Am.
Chem. Soc. 2000, 122, 10464. (b) Lautens, M.;
Dockendorff, C.; Fagnou, K.; Malicki, A. Org. Lett. 2002, 4,
1311. (c) Murakami, M.; Igawa, H. Chem. Commun. 2002,
390. (d) Menard, F.; Lautens, M. Angew. Chem. Int. Ed.
2008, 47, 2085. (e) Panteleev, J.; Menard, F.; Lautens, M.
Adv. Synth. Catal. 2008, 350, 2893.
(12) (a) Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Martin-
Matute, B. J. Am. Chem. Soc. 2001, 123, 5358. (b) Pattison,
G.; Piraux, G.; Lam, H. W. J. Am. Chem. Soc. 2010, 132,
14373.
In summary, we have developed the first rhodium-cata-
lyzed 1,4-addition of arylboronic acids to acrylic acid fur-
nishing valuable 3-arylpropionic acids in good to high
yields operating in water as the reaction medium. This
methodology is applicable to a variety of substrates, dis-
plays a wide functional group tolerance and expands the
scope of rhodium-catalyzed C–C bond-forming reactions.
(13) (a) Amengual, R.; Michelet, V.; Genet, J.-P. Tetrahedron
Lett. 2002, 43, 5905. (b) Lautens, M.; Yoshida, M. Org.
Lett. 2002, 4, 123. (c) Lautens, M.; Yoshida, M. J. Org.
Chem. 2003, 68, 762. (d) Genin, E.; Michelet, V.; Genet,
J. P. J. Organomet. Chem. 2004, 689, 3820.
Supporting Information including experimental details and
spectroscopic data of all new compounds is available online at
Synlett 2011, No. 17, 2517–2520 © Thieme Stuttgart · New York