nitrite at pH 4 4 and cyclic voltammogram recorded at a bare
glassy carbon electrode shows a negligible reduction current in
nitrite solution (Fig. 5C, curve b). This suggests that nitrite
may interact with intercalated FeTSPP. This phenomenon is
reversible, since when the same electrode was cycled in buffer
solution, the reversible FeIII/FeII signal appears again. As
reported in the literature, interaction between nitrite and iron
porphyrins exists through the reduction of metal centre followed
by a multi-electron catalytic process toꢀform iron-nitrosyl inter-
mediates (FeII[NOꢃTSPP] and FeII[NO TSPP]), the anodic peak
at 0.34 V corresponding to FeII[NOꢃTSPP]/ FeII[NO+TSPP]
oxidation40,62,65
11 M. Halma, A. K. Dias de Freitas Castro, C. Taviot-Gueho,
V. Prevot, C. Forano, F. Wypych and S. Nakagaki, J. Catal.,
2008, 257, 233–243.
´
12 M. Halma, A. K. Dias de Freitas Castro, V. Prevot, C. Forano,
F. Wypych and S. Nakagaki, J. Mol. Catal. A: Chem., 2009, 310,
42–50.
13 L. Barloy, J. P. Lallier, D. Mansuy, J. Piffard, M. Tournoux,
J. B. Valim and W. Jones, New J. Chem., 1992, 16, 71–80.
14 M. Halma, F. Wypych, S. M. Drechsel and S. Nakagaki,
J. Porphyrins Phthalocyanines, 2002, 6, 502–513.
15 S. Takagi, M. Eguchi, D. A. Tryk and H. Inoue, J. Photochem.
Photobiol., C, 2006, 7, 104–126.
16 K. Lang, P. Bezdicka, J. L. Bourdelande, J. Hernanado, I. Jirka,
E. Kafunkova, F. Kovanda, P. Kubat, J. Mosinger and
A. M. Wagnerova, Chem. Mater., 2007, 19, 3822–3829.
17 K. Lang, P. Kubat, J. Mosinger, J. Bujdak, M. Hof, P. Janda,
J. Sykora and N. Iyi, Phys. Chem. Chem. Phys., 2008, 10,
4429–4434.
4. Conclusions
18 S. Y. Ryu, M. Yoon, J. H. Choy, S. H. Hwang, A. Frube, T. Asahi,
H. Masuhara and B. Kor, Chem. Soc, 2003, 24, 446–452.
Metallo-porphyrin anionic complexes ZnTSPP and FeTSPP
were successfully intercalated between Zn2Cr-LDH layers
using coprecipitation method at constant pH 6.2. Careful
structural and electrochemical characterizations of hybrid
materials were conducted, showing the intercalation of guest
molecules as a H aggregates in the case of Zn2Cr-ZnTSPP
and an oxo-bridged diron(III) complexes in the case of
Zn2Cr-FeTSPP. While a small contribution from monomers
(1%) can be taken into account in the electrochemical responses
at pH 4.5. In both cases, we observed a perpendicular arrange-
ment of the porphyrin ring with respect to the LDH layers.
Finally, iron species in Zn2Cr-FeTSPP exhibit an electrocatalytic
activity for the reduction of oxygen, hydrogen peroxide and
nitrite. Although the electroactivity of these hybrid materials
remains low, we anticipate that such Zn2Cr LDH phases, stable
at low pH, will find applications as sensors or photocatalysts.
19 E. Ka
M. Slouf, A.-L. Troutier-Thuilliez, F. Leroux, V. Verney and
C. Taviot-Gueho, J. Mater. Chem., 2010, 20, 9423–9432.
20 F. Kovanda, E. Jindova, K. Lang, P. Kubat and Z. Sedla
Appl. Clay Sci., 2010, 48, 260–270.
21 S. Bonnet, C. Forano, A. de Roy and J.-P. Besse, Chem. Mater.,
1996, 8, 1962–1968.
22 P. Kovar, M. Pospisil, E. Kafunkova, K. Lang and F. Kovanda,
J. Mol. Model., 2009, 16, 223–233.
23 E. Kafunkova, C. Taviot-Gueho, P. Bezdika, M. Klementov,
´ ´
funkova, K. Lang, P. Kubat, M. Klementova, J. Mosinger,
´ ´ ´ ´
´
´
´
kova,
´ ´
P. Kov, P. Kubt, J. Mosinger, M. Pospil and K. Lang, Chem.
Mater., 2010, 22, 2481–2480.
24 A. Pı
E. Vecernı
2010, 49, 363–371.
´
skova
´
, P. Bezdicka, D. Hradil, E. Ka
funkova, K. Lang,
´ ´
´
kova
´
, F. Kovanda and T. Gryga, Appl. Clay Sci.,
25 L. Gaillon, F. Bedoui, J. Devynck and P. Battioni, J. Electroanal.
Chem., 1993, 347, 435–442.
26 Z. Tong, S. Tetsuya and T. Katsuhiko, Mater. Lett., 2003, 57,
2258–2261.
27 T. Shichi, Z. Tong, S. Hirai and K. Takagi, Chem. Lett., 2002,
834–835.
28 M. Shao, J. Han, W. Shi, M. Wei and X. Duan, Electrochem.
Commun., 2010, 12, 1077–1080.
Acknowledgements
29 S. Nakagaki, M. Halma, A. Bail, C. Guadalupe, A. Gregoria,
C. Guadalupe and F. Wypych, J. Colloid Interface Sci., 2005, 281,
417–423.
30 Z. Tong, T. Shichi, G. Zhang and K. Takagi, Res. Chem. Intermed.,
2003, 29, 335–341.
31 H. Tahaya, A. Ogata, T. Kuwahara, S. Ogata, M. Karasu,
J.-i. Kadokawa and K. Chiba, Microporous Mater., 1996, 7,
151–158.
32 C. A. S. Barbosa, A. M. D. C. Ferreira and V. R. L. Constantino,
Eur. J. Inorg. Chem., 2005, 1577–1584.
This work was supported by the CMCU (06/S1207) and MIRA
programs. We thank N. Caperaa for her technical assistance,
S. Therias (LPMM UMR 6505, Clermont-Ferrand) for experi-
mental facilities and K. Lang, Institute of Inorganic Chemistry
of the Academy of Sciences of the Czech Republic, for fruitful
discussion on UV-Vis absorption data.
33 F. Wypych, G. A. Bubniak, M. Halma and S. Nakagaki, J. Colloid
Interface Sci., 2003, 264, 203–207.
References
34 F. Wypych, A. Bail, M. Halma and S. Nakagaki, J. Catal., 2005,
234, 431–437.
1 J.-H. Choy, S.-J. Choi, J.-M. Oh and T. Park, Appl. Clay Sci.,
2007, 36, 122–132.
35 T. Yui, T. Kameyama, T. Sasaki, T. Torimoto and K. Takagi,
J. Porphyrins Phthalocyanines, 2007, 11, 428–433.
36 K. M. Kadish and E. Van Caemelbecke, J. Solid State Electrochem.,
2003, 7, 254–258.
2 U. Costantino, V. Ambrogi, M. Noccheti and L. Perioli, Microporous
Mesoporous Mater., 2008, 107, 149–160.
3 C. Forano, S. Vial and C. Mousty, Curr. NanoSci., 2006, 2,
283–294.
37 M. Biesaga, K. Pyrzynska and M. Trojanowicz, Talanta, 2000, 51,
209–224.
38 J. F. Van Staden and R. I. Stefan-Van Staden, Talanta, 2010, 80,
1598–1605.
4 F. Li and X. Duan, in Structure and Bonding, ed. D. M. P. Mingos,
Springer-Verlag, Berlin Heidelberg, 2006, pp. 193–223.
5 M. H. Valkenberga and W. F. Houmllderic, Catal. Rev. Sci. Eng.,
2002, 44, 321–374.
39 E. B. Fleischer, J. M. Palmer, T. S. Srivastava and A. Chatterjee,
J. Am. Chem. Soc., 1971, 93, 3162–3167.
40 M. H. Barley, K. J. Takeuchi and T. J. Meyer, J. Am. Chem. Soc.,
1986, 108, 5876–5885.
41 A. A. El-Awady, P. C. Wilkins and R. G. Wilkins, Inorg. Chem.,
1985, 24, 2053–2057.
42 S. C. M. Gandini, V. E. Yushmanov and M. Tabak, J. Inorg.
Biochem., 2001, 85, 263–277.
6 H. Nobukuni, Y. Shimazaki, H. Uno, Y. Naruta, K. Ohkubo,
T. Kojima, S. Fukuzumi, S. Seki, H. Sakai, T. DHasobe and
F. Tani, Chem.–Eur. J., 2010, 16, 11611–11623.
7 P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J.
Therien and D. A. Bonnell, ACS Nano, 2010, 4, 1019–1025.
8 J. H. Zagal, S. Griveau, K. I. Ozoemena, T. Nyokong and
F. Bedioui, J. Nanosci. Nanotechnol., 2009, 9, 2201–2214.
9 I. Y. Park, K. Kuroda and C. Karo, Chem. Lett., 1989, 2057–2058.
10 T. J. Pinnavaia, M. Chibwe, V. R. L. Constantino and S. K. Yun,
Appl. Clay Sci., 1995, 10, 117–129.
43 T. Roisnel and J. Rodriguez-Carvajal, Mater. Sci. Forum, 2001,
378–381, 118–123.
c
1904 New J. Chem., 2011, 35, 1898–1905
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011