ChemComm
DOI: 10.1039/C5CC02P98a9gAe 4 of 4
COMMUNICATION
Journal Name
mechanism. It nicely explains the observed optimal surface hydroxyl
group coverage for the best polymerization outcome, since for
coupling to occur the activated, protonated monomers (and growing
oligomers) may only react with the intact monomers (due to charge
repulsion between the protonated species). Thus the surface
hydroxyl coverage, and hence the proton availability, controls the
ratio of the activated to non-activated monomers, and thereby the
entire polymerization process.
1. L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters and S.
Hecht, Nat. Nanotechnol., 2007, , 687-691.
2
2. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M.
Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen and R. Fasel,
Nature, 2010, 466, 470-473.
3. L. Lafferentz, V. Eberhardt, C. Dri, C. Africh, G. Comelli, F. Esch, S.
Hecht and L. Grill, Nat. Chem., 2012, 4, 215-220.
The results of DFT molecular modeling of the on-surface DITF
coupling confirm the kinetic feasibility of the postulated reaction
steps. The energetic barrier for the initial proton transfer is quite low
(0.92 eV), and the subsequent coupling proceeds spontaneously with
an associated activation energy of 0.98 eV. The activation energies
for the analogous coupling of two intact (DITF-DITF) and two
protonated (DITFH+-DITFH+) molecules are much higher (2.45 eV
and 1.95 eV, respectively), accounting well for the experimental
observations. The high barrier for the DITF-DITF dimerization
results from the fact that two inactivated C-I bonds have to be
strongly distorted before the formation of C-C bond. In the case of
the protonated monomers the acquired charge give rise to their
already mentioned strong electrostatic repulsion enhancing the
reaction barrier.
In conclusion, we have demonstrated that on a reduced
TiO2(011)-(2×1) surface the efficiency of the coupling reaction
between the aryl halides is essentially governed by the density of
surface hydroxyl groups. The polymerization process does not occur
on the reduced substrate prepared without surface hydroxyls, and is
most effective for the TiO2(011) surface with moderate amount of
hydroxyl groups, which is in agreement with a tentative multistep
proton-assisted mechanism. Owing to distinctly different nature of
transition metal oxides and their much broader structural diversity as
compared to metals, our findings open new possibilities for
straightforward engineering of hybrid organic-inorganic materials
with potentially advantageous properties. These could be controlled
by adjusting the valence and conduction bands of the chosen
inorganic semiconductor with regard to the HOMO and LUMO
levels of the organic semiconductor polymerized directly on top.
This research was supported by the 7th Framework Programme
of the European Union Collaborative Project ICT (Information and
Communication Technologies) “Atomic Scale and Single Molecule
Logic Gate Technologies” (AtMol), contract no. FP7-270028, the
Polish Ministry for Science and Higher Education, contract no.
0322/IP3/2013/72, as well as by the German Research Foundation
(DFG via SFB 951). The experiment was carried out using
equipment purchased with financial support from the European
Regional Development Fund within the framework of the Polish
Innovation Economy Operational Program (contract no.
POIG.02.01.00-12-023/08).
4. L. Lafferentz, F. Ample, H. Yu, S. Hecht, C. Joachim and L. Grill,
Science, 2009, 323, 1193-1197.
5. C. Bombis, F. Ample, L. Lafferentz, H. Yu, S. Hecht, C. Joachim and
L. Grill, Angew. Chem. Int. Ed., 2009, 48, 9966-9970.
6. S. Kawai, M. Koch, E. Gnecco, A. Sadeghi, R. Pawlak, T. Glatzel, J.
Schwarz, S. Goedecker, S. Hecht, A. Baratoff, L. Grill and E. Meyer,
Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 3968-3972.
7. M. Bieri, M. T. Nguyen, O. Groning, J. M. Cai, M. Treier, K. Ait-
Mansour, P. Ruffieux, C. A. Pignedoli, D. Passerone, M. Kastler, K.
Mullen and R. Fasel, J. Am. Chem. Soc., 2010, 132, 16669-16676.
8. J. Eichhorn, D. Nieckarz, O. Ochs, D. Samanta, M. Schmittel, P. J.
Szabelski and M. Lackinger, ACS Nano, 2014,
9. M. Koch, F. Ample, C. Joachim and L. Grill, Nat. Nanotechnol.,
2012, , 713-717.
8, 7880-7889.
7
10. C. A. Palma, K. Diller, R. Berger, A. Welle, J. Bjork, J. L. Cabellos,
D. J. Mowbray, A. C. Papageorgiou, N. P. Ivleva, S. Matich, E.
Margapoti, R. Niessner, B. Menges, J. Reichert, X. L. Feng, H. J.
Rader, F. Klappenberger, A. Rubio, K. Mullen and J. V. Barth, J. Am.
Chem. Soc., 2014, 136, 4651-4658.
11. M. Kolmer, A. A. Ahmad Zebari, J. S. Prauzner-Bechcicki, W.
Piskorz, F. Zasada, S. Godlewski, B. Such, Z. Sojka and M.
Szymonski, Angew. Chem. Int. Ed., 2013, 52, 10300-10303.
12. M. Kittelmann, P. Rahe, M. Nimmrich, C. M. Hauke, A. Gourdon
and A. Kuhnle, ACS Nano, 2011, 5, 8420–8425.
13. J. S. Prauzner-Bechcicki, S. Godlewski and M. Szymonski, Phys.
Status Solidi A, 2012, 209, 603-613.
14. U. Diebold, Surf. Sci. Rep., 2003, 48, 53-229.
15. C. L. Pang, R. Lindsay and G. Thornton, Chem. Rev., 2013, 113
3887-3948.
,
16. M. A. Henderson, Surf. Sci. Rep., 2011, 66, 185-297.
17. J. Tao, T. Luttrell and M. Batzill, Nat. Chem., 2011,
18. R. Addou, T. P. Senftle, N. O'Connor, M. J. Janik, A. C. T. van Duin
and M. Batzill, ACS Nano, 2014, , 6321-6333.
3, 296-300.
8
19. S. Godlewski, A. Tekiel, J. Budzioch, A. Gourdon, J. S. Prauzner-
Bechcicki and M. Szymonski, ChemPhysChem, 2009, 10, 3278-3284.
20. T. P. Trainor, A. M. Chaka, P. J. Eng, M. Newville, G. A.
Notes and references
a
Waychunas, J. G. Catalano and G. E. Brown, Surf. Sci., 2004, 573
,
Centre for Nanometer-Scale Science and Advanced Materials,
204-224.
NANOSAM, Faculty of Physics, Astronomy and Applied Computer
Science, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow,
Poland. E-mail: marek.kolmer@uj.edu.pl.
21. F. Traeger, M. Kauer, C. Wöll, D. Rogalla and H. W. Becker, Phys.
Rev. B, 2011, 84, 075462.
b
22. T. Woolcot, G. Teobaldi, C. L. Pang, N. S. Beglitis, A. J. Fisher, W.
A. Hofer and G. Thornton, Phys. Rev. Lett., 2012, 109, 156105.
23. J. Tao, Q. Cuan, X.-Q. Gong and M. Batzill, J. Phys. Chem. C, 2012,
116, 20438-20446.
Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060
Krakow, Poland.
c
Department of Chemistry, Humboldt-Universität zu Berlin, Brook-
Taylor-Str. 2, 12489 Berlin, Germany.
24. A. Saywell, J. Schwarz, S. Hecht and L. Grill, Angew. Chem. Int. Ed.,
2012, 51, 5096-5100.
†
Electronic Supplementary Information (ESI) available. See
DOI: 10.1039/c000000x/
Present address: Salahaddin University, College of Science,
§
Department of Physics, 44001 Erbil, Kurdistan, Iraq
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012