AMINO NITRILE DERIVATIVES OF THIADIAZOLE
1087
thiadiazolidine are obtained in good yields and can be
isolated by standard procedures. This contrasts with
previously studied nucleophilic addition reaction of
monodentate nucleophiles which produced only mono-
addition to give thiadiazolines, most of which were only
stable in solution, reverting to the reactants on work-up,
or unstable diaddition thiadiazolidines which decom-
3. Ar a´ n VJ, D a´ vila E, Frances M, Goya P, Gras J, Mart ´ı nez A,
Mylonakis N, Pardo I. Arzneimittelforschung 1990; 40: 1003–
1
. Gazieva GA, Kravchenko AN, Lebedev OV. Russ. Chem. Rev.
2000; 69: 221–230.
. Kazmierski WM, Webb A, Furfine E, Spaltenstein A, Wright L.
Bioorg. Med. Chem. Lett. 2004; 14: 5689–5692.
007.
4
5
6
. Wong T, Groutas CS, Mohan S, Lai Z, Alliston KR, Vu N,
Schechter NM, Groutas WC. Arch. Biochem. Biophys. 2005;
18
4
36: 1–7.
. Mir ´ı fico MV, Vasini EJ, Sicre JE. Int. J. Chem. Kinet. 1991; 23:
97–202.
8. Mir ´ı fico MV, Caram JA, Vasini EJ. Electrochem. Acta 1991; 36:
67–171.
fico MV, Caram JA, Vasini EJ, Sicre JE. J. Phys. Org. Chem.
posed loosing the sulfamide moiety.
7
To the best of our knowledge, only two methods have
been reported for the formation of a carbon–carbon bond
between the heterocyclic C-atoms of 1 and a substituent,
1
1
9. Mirı
993; 6: 341–346.
10. Caram JA, Mir ´ı fico MV, Vasini EJ. Electrochem. Acta 1994; 39:
39–945.
´
27
the first uses Grignard reagents and the second employs
1
15
a very strong acid catalyst (AlCl3). The synthesis
reported here takes place under mild conditions and can
be easily adjusted to produce mononitrile or dinitrile
derivatives, which are well known for their usefulness in
synthetic routes.
9
1
1
1. Mir ´ı fico MV, Vasini EJ. An. Quim. 1995; 91: 557–560.
2. Caram JA, Mir ´ı fico MV, Aimone SL, Vasini EJ. Can. J. Chem.
1996; 74: 1564–1571.
3. Castellano EE, Piro OE, Caram JA, Mir ´ı fico MV, Aimone SL,
Vasini EJ, Glossman MD. J. Phys. Org. Chem. 1998; 11: 91–100.
4. Svartman EL, Caram JA, Mir ´ı fico MV, Vasini EJ. Can. J. Chem.
1999; 77: 511–517.
5. Rozas MF, Piro OE, Castellano EE, Mir ´ı fico MV, Vasini EJ.
Synthesis 2002; 2399–2403.
6. Caram JA, Aimone SL, Mir ´ı fico MV, Vasini EJ. J. Phys. Org.
Chem. 2003; 16: 220–225.
7. Caram JA, Mir ´ı fico MV, Aimone SL, Piro OE, Castellano EE,
Vasini EJ. J. Phys. Org. Chem. 2004; 17: 1091–1098.
8. Caram JA, Piro OE, Castellano EE, Mir ´ı fico MV, Vasini EJ.
J. Phys. Org. Chem. 2006; 19: 229–237.
9. Svartman EL, Rozas MF, Piro OE, Castellano EE, Mir ´ı fico MV.
Synthesis 2006; 2313–2318.
0. Aimone SL, Caram JA, Mir ´ı fico MV, Vasini EJ. J. Phys. Org.
Chem. 2000; 13: 272–282.
1. Aimone SL, Mir ´ı fico MV, Caram JA, Glossman DM, Piro OE,
Castellano EE, Vasini EJ. Tetrah. Lett. 2000; 41: 3531–3535.
2. Castellano EE, Piro OE, Caram JA, Mir ´ı fico MV, Aimone SL,
Vasini EJ, M a´ rquez-Lucero A, Glossman-Mitnik D. J. Mol. Struct.
1
1
1
1
1
1
1
2
2
2
The reactions steps were unambiguosly clarified by the
use of CV. This demonstrates once again the merits of this
electrochemical technique for the elucidation or organic
reactions mechanisms and the detection of intermediates.
In particular, it was shown that mono and diaddition did
not take place consecutively on the same substrate.
Instead, it was necessary to N-methylate the monoaddi-
ꢀ
tion nitrile before a second CN anion could be added.
Acknowledgements
This work was financially supported by the Consejo
Nacional de Investigaciones Cient ´ı ficas y T e´ cnicas
2002; 604: 195–203.
3. Harada K. In The Chemistry of Carbon-Nitrogen Double Bound,
(
CONICET), the Comisi o´ n de Investigaciones Cient ´ı ficas
2
de la Provincia de Buenos Aires (CIC Pcia. Bs.As.), and
the Universidad Nacional de La Plata (UNLP), Facultad
de Ciencias Exactas, Departamento de Qu ´ı mica and
Facultad de Ingenier ´ı a, Departamento de Ingenier ´ı a Qu ´ı -
mica. M. V. M, J. A. C., and O. E. P. are researchers of
CONICET and UNLP, E. J. V. is researcher of CIC Pcia.
Bs. As. and UNLP.
Patai S (ed.). Interscience Publishers: New York, 1970.
24. Zuman P. ARKIVOC, 2002; (i) 85–140.
2
5. Bruylants A, Feytmants-de Medicis E. In The Chemistry of the
Carbon-Nitrogen Double Bond, Patai S (ed.). John Wiley & Sons:
London, New York, Sydney, Toronto, 1970.
26. Katritzky AR, Scriven EFV, Majumder S, Tu H, Vakulenko AV,
Akhmedov NG, Murugan R. Synthesis 2005; 993–997.
2
2
2
3
7. Pansare SV, Rai AN, Kate SN. Synlett 1998; 623–624.
8. Heinze J. Angewandte Chemie Int. Ed. 1984; 23: 831–847.
9. Wright JB. J. Org. Chem 1964; 29: 1905–1909.
0. Riddick JA, Bunger WB. In Techniques of Chemistry, vol. II,
Weissberger A (ed.). Wiley-Interscience: New York, 1970.
1. Perrin DD, Armarego WLF. Purification of Laboratory Chemicals.
Pergamon Press: Oxford, New York, 1988.
REFERENCES
3
1
. Weinstock LM, Shinkai I. In Comprehensive Heterocyclic Chem-
istry, vol. 6, Katrisky AR, Reeds WC (eds). Pergamon Press:
Oxford, 1984.
. Ar a´ n VJ, Goya P, Ochoa C. In Advances in Heterocyclic Chemistry,
vol. 44, Katrisky AR, Boulton AJ (eds). Academic Press: New
York and London, 1988.
32. Coetzee JF. Recommended Methods for Purification of Solvents
and Tests for Impurities. Pergamon Press: Oxford, 1982.
33. Johnson CK. ORTEP-II, A Fortran Thermal-Ellipsoid Plot
Program, Report ORNL-5138; Oak Ridge National Laboratory:
Tennessee USA, 1976.
2
34. Nicholson RS, Shain I. Anal. Chem. 1965; 37: 178–190.
Copyright # 2007 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2007; 20: 1081–1087
DOI: 10.1002/poc