722
K. S. SUH ET AL.
[30] Sano S, Sugiyama K, Ito T, et al. Identification of the
strong vasorelaxing substance scirpusin B, a dimer of
piceatannol, from passion fruit (Passiflora edulis) seeds.
J Agric Food Chem. 2011;59(11):6209–6213.
[31] Kinoshita Y, Kawakami S, Yanae K, et al. Effect of long-
term piceatannol treatment on eNOS levels in cultured
endothelial cells. Biochem Biophys Res Commun.
2013;430(3):1164–1168.
[32] Matsui Y, Sugiyama K, Kamei M, et al. Extract of pas-
sion fruit (Passiflora edulis) seed containing high
amounts of piceatannol inhibits melanogenesis and
promotes collagen synthesis. J Agric Food Chem.
2010;58(20):11112–11118.
[33] Maruki-Uchida H, Kurita I, Sugiyama K, et al. The pro-
tective effects of piceatannol from passion fruit
(Passiflora edulis) seeds in UVB-irradiated keratinocytes.
Biol Pharm Bull. 2013;36(5):845–849.
[34] Son Y, Byun SJ, Pae HO. Involvement of heme oxygen-
ase-1 expression in neuroprotection by piceatannol, a
natural analog and a metabolite of resveratrol, against
glutamate-mediated oxidative injury in HT22 neuronal
cells. Amino Acids. 2013;45(2):393–401.
[35] Ashikawa K, Majumdar S, Banerjee S, et al. Piceatannol
inhibits TNF-induced NF-kappaB activation and NF-
kappaB-mediated gene expression through suppres-
sion of IkappaBalpha kinase and p65 phosphorylation.
J Immunol. 2002;169(11):6490–6497.
[36] Chang JK, Hsu YL, Teng IC, et al. Piceatannol stimu-
lates osteoblast differentiation that may be mediated
by increased bone morphogenetic protein-2 produc-
tion. Eur J Pharmacol. 2006;551(1–3):1–9.
[37] Thornalley PJ, Tisdale MJ. Inhibition of proliferation
of human promyelocytic leukaemia HL60 cells by S-d-
lactoylglutathione in vitro. Leuk Res. 1988;12(11–12):
897–904.
[38] Wang H, Meng QH, Chang T, et al. Fructose-induced
peroxynitrite production is mediated by methylglyoxal
in vascular smooth muscle cells. Life Sci.
2006;79(26):2448–2454.
[39] Suh KS, Choi EM, Rhee SY, et al. Methylglyoxal induces
oxidative stress and mitochondrial dysfunction in
osteoblastic MC3T3-E1 cells. Free Radic Res.
2014;48(2):206–217.
[40] Kim KA, Lee WK, Kim JK, et al. Mechanism of refractory
ceramic fiber- and rock wool-induced cytotoxicity in
alveolar macrophages. Int Arch Occup Environ Health.
2001;74(1):9–15.
[41] Xue M, Rabbani N, Momiji H, et al. Transcriptional con-
trol of glyoxalase 1 by Nrf2 provides a stress-respon-
sive defence against dicarbonyl glycation. Biochem J.
2012;443(1):213–222.
[42] Mukhopadhyay P, Rajesh M, Yoshihiro K, et al. Simple
quantitative detection of mitochondrial superoxide
production in live cells. Biochem Biophys Res
Commun. 2007;358(1):203–208.
[43] Thornalley PJ. Glyoxalase I – structure, function and a
critical role in the enzymatic defence against glyca-
tion. Biochem Soc Trans. 2003;31(6):1343–1348.
[44] Atkins TW, Thornally PJ. Erythrocyte glyoxalase activity
in genetically obese (ob/ob) and streptozotocin dia-
betic mice. Diabetes Res. 1989;11(3):125–129.
[45] Shinohara M, Thornalley PJ, Giardino I, et al.
Overexpression of glyoxalase-I in bovine endothelial
cells inhibits intracellular advanced glycation endprod-
uct formation and prevents hyperglycemia-induced
increases in macromolecular endocytosis. J Clin Invest.
1998;101(5):1142–1147.
[46] Skapare E, Konrade I, Liepinsh E, et al. Association of
reduced glyoxalase 1 activity and painful peripheral
diabetic neuropathy in type 1 and 2 diabetes mellitus
patients.
J
Diabetes Complications. 2013;27(3):
262–267.
[47] Takasawa R, Akahane H, Tanaka H, et al. Piceatannol, a
natural trans-stilbene compound, inhibits human
glyoxalase I. Bioorg Med Chem Lett. 2017;27(5):
1169–1174.
[48] Webster L, Abordo EA, Thornalley PJ, et al. Induction
of TNF alpha and IL-1 beta mRNA in monocytes by
methylglyoxal- and advanced glycated end product-
modified human serum albumin. Biochem Soc Trans.
1997;25(2):250S.
[49] Zhu J, Krishnegowda G, Gowda DC. Induction of
proinflammatory responses in macrophages by the
glycosylphosphatidylinositols of Plasmodium falcip-
arum: the requirement of extracellular signal-regulated
kinase, p38, c-Jun N-terminal kinase and NF-kappaB
pathways for the expression of proinflammatory cyto-
kines and nitric oxide. J Biol Chem. 2005;280(9):
8617–8627.
[50] Onishi A, Akimoto T, Urabe M, et al. Attenuation of
methylglyoxal-induced peritoneal fibrosis: immunomo-
dulation by interleukin-10. Lab Invest. 2015;95(12):
1353–1362.
[51] Westwood ME, Thornalley PJ. Induction of synthesis
and secretion of interleukin 1 beta in the human
monocytic THP-1 cells by human serum albumins
modified with methylglyoxal and advanced glycation
endproducts. Immunol Lett. 1996;50(1–2):17–21.
[52] Wang H, Meng QH, Gordon JR, et al. Proinflammatory
and proapoptotic effects of methylglyoxal on neutro-
phils from patients with type 2 diabetes mellitus. Clin
Biochem. 2007;40(16–17):1232–1239.
[53] de Arriba SG, Stuchbury G, Yarin J, et al. Methylglyoxal
impairs glucose metabolism and leads to energy
depletion in neuronal cells – protection by carbonyl
scavengers. Neurobiol Aging. 2007;28(7):1044–1050.
[54] Addabbo F, Ratliff B, Park HC, et al. The Krebs cycle
and mitochondrial mass are early victims of endothe-
lial dysfunction: proteomic approach. Am J Pathol.
2009;174(1):34–43.
€
[55] Schroder M. Endoplasmic reticulum stress responses.
Cell Mol Life Sci. 2008;65(6):862–894.
[56] Boyce M, Yuan J. Cellular response to endoplasmic
reticulum stress: a matter of life or death. Cell Death
Differ. 2006;13(3):363–373.
[57] Guo YS, Sun Z, Ma J, et al. 17b-estradiol inhibits ER
stress-induced apoptosis through promotion of TFII-I-
dependent Grp78 induction in osteoblasts. Lab Invest.
2014;94(8):906–916.
[58] Zhang K, Kaufman RJ. From endoplasmic-reticulum
stress to the inflammatory response. Nature.
2008;454(7203):455–462.