10.1002/ejoc.202001561
European Journal of Organic Chemistry
COMMUNICATION
intermediate 8 or 9, which would further cyclization with
benzaldehyde to generate 6a. In path B, intermadiate 10 or 11
were firstly generated, then condensated with benzaldehyde to
afford product 7a. Through comparison with authentic samples
6a and 7a, 7a could be isolated in 43% yield in reaction (f), 6a
was not observed. Further control experimental for 1j with 2a
under standard conditions was also condected (See SI). Thses
results disclosed that path B is the potential reaction process.
In summary, we have developed an oxidative [3+1+1]
convergent domino cyclization to prepare 2,4,5-trisubstituted
oxazoles in the presence of iodine and molecular sieves. This
process provides a new approach for one-pot synthesis of
quinoline,
quinoxaline,
quinazolin-4(3H)-one
and
benzo[d]thiazole attached 2,4,5-trisubstituted oxazoles without
any metal catalyst. It features wide substrate scope, good
functional group tolerance, mild reaction conditions, and easily
available substrates. Mechanism investigation uncovered that 2-
(iodomethyl)quinoline, quinoline-2-carbaldehyde and 2-imino-
1,2-diphenylethan-1-ol or isomer are the potential intermediates.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21702091), Science and Technology
Innovation Development Plan of Yantai (2020MSGY114) and
Yantai “Double Hundred Plan”. The authors also thank Talent
Induction Program for Youth Innovation Teams in Colleges and
Universities of Shandong Province. The Graduate Innovation
Foundation of Yantai University (YDZD2035) is gratefully
acknowledged (for Z.-H. Shang). The College Students
Innovation
and
Entrepreneurship
Training
Program
(S202011066007) are gratefully acknowledged (for K.-X., Liu).
Keywords: 2-Quinoline-4,5-diaryl-oxazole • Iodine • Methyl
azaarenes • Convergent domino cyclization
[1]
a) J. Senger, J. Melesina, M. Marek, C. Romier, I. Oehme, O. Witt, W.
Sippl, M. Jung, J. Med. Chem. 2016, 59, 1545-1555; b) S. Chen, X. Ji,
M. Gao, L. M. Dedkova, S. M. Hecht, J. Am. Chem. Soc. 2019, 141,
5597-5601; c) Z. Jin, Nat. Prod. Rep. 2016, 33, 1268–1317; d) Z. Jin,
Nat. Prod. Rep. 2011, 28, 1143-1191; e) F. Zhao, Z. Gao, W. Jiao, L.
Chen, L. Chen, X. Yao, Planta Med. 2012, 78, 1906-1911; g) J. J. Han,
L. Zhang, J. K. Xu, L. Bao, F. Zhao, Y. H. Chen, W. K. Zhang, H. W. Liu,
J. Asian Nat. Prod. Res. 2015, 17, 541-549; h) H. Fan, D. Qi, M. Yang,
H. Fang, K. Liu, F. Zhao, Phytomedicine, 2013, 20, 319-323; i) H. Fan,
M. Yang, X. Che, Z. Zhang, H. Xu, K. Liu, Q. Meng, Fitoterapia, 2012,
83, 1226-1237.
Scheme 4. Control experiments.
Based on the above results and previous works, a possible
reaction mechanism is proposed in scheme 5. Initially, 2-
methylquinoline 2a undergoes iodination and oxidation to give
intermediate 2-(iodomethyl)quinoline 2aa and quinoline-2-
carbaldehyde 2ab in the presence of iodine and DMSO. At the
same time, benzoin 1a undergoes condensation with NH4OAc to
form intermediate 10 or 11 via path A. The potential path B and
C are excluded via control experiments (Scheme 4) and result of
product 3ja (Scheme 3). In this process, benzyl 4a is oxidazed
as a sideproduct, which can be efficiently recycled to benzoin 1a
by NaBH4 in quantitative yield. Finally, quinoline-2-carbaldehyde
1ab will cyclization with intermediate 10 or 11 under standard
conditions to generate the end product 3aa.
[2]
a) Y. Momose, T. Maekawa, T. Yamano, M. Kawada, H. Odaka, H.
Ikeda, T. Sohda, J. Med. Chem. 2002, 45, 1518-1534; b) H. Hashimoto,
K. Imamura, J.-i. Haruta, K. Wakitani, J. Med. Chem. 2002, 45, 1511-
1517; c) D. Davyt, G. Serra, Marine Drugs 2010, 8, 2755-2780; d) H. A.
Priestap, M. A. Barbieri, F. Johnson, J. Nat. Prod. 2012, 75, 1414-1418;
e) D.-W. Zhang, Y. Yang, F. Yao, Q. Y. Yu, S. J. Dai, J. Nat. Med. 2012,
66, 362-366; f) S. J. Dai, F. Zhao, J. F. Liu, W. S. Fang, K. Liu, J. Asian
Nat. Prod. Res. 2012, 14, 97-104.
[3]
a) S. M. Mennen, J. D. Gipson, Y. R. Kim, S. J. Miller, J. Am. Chem.
Soc. 2005, 127, 1654-1655; b) B. Shi, A. J. Blake, I. B. Campbell, B. D.
Judkins, C. J. Moody, Chem. Commun. 2009, 3291-3293; c) P. Gao, J.
Wang, Z. Bai, D. Yang, M.-J. Fan, Z.-H. Guan, Chem. Asia. J. 2017, 12,
1865-1868; d) W. Zhang, W. Yu, Q. Yan, Z. Liu, Y. Zhang, Org. Chem.
Front. 2017, 4, 2428-2432; e) M. Sun, L. Zhao, M.-W. Ding, J. Org.
Chem. 2019, 84, 14313-14319; f) J. Li, S.-R. Zhu, Y. Xu, X.-C. Lu, Z.-B.
Wang, L. Liu, D.-f. Xu, RSC Advances 2020, 10, 24795-24799; g) K.
Sun, X. Wang, C. Li, H. Wang, L. Li, Org. Chem. Front. 2020, 7, 3100.
a) H. Jiang, H. Huang, H. Cao, C. Qi, Org. Lett. 2010, 12, 5561-5563;
b) S. C. Wan, L. Gao, Q. Wang, J. Zhang, Z. Wang, Org. Lett. 2010, 12,
3902-3905; c) C. Wan, J. Zhang, S. Wang, J. Fan, Z. Wang, Org. Lett.
2010, 12, 2338-2341; d) Z. Xu, C. Zhang, N. Jiao, Angew. Chem. Int.
Ed. 2012, 51, 11367-11370; e) J. Pan, X. Li, X. Qiu, X. Luo, N. Jiao,
Org. Lett. 2018, 20, 2762-2765; f) J. Xie, H. Jiang, Y. Cheng, C. Zhu,
Chem. Commun. 2012, 48, 979-981; g) W.-C. Gao, R.-L. Wang, C.
[4]
Scheme 5. A plausible reaction mechanism for the preparation of 2-quinoline-
4,5-diphenyl-oxazole.
4
This article is protected by copyright. All rights reserved.