10.1002/chem.201801654
Chemistry - A European Journal
COMMUNICATION
[1] a) S. Lal, S. E. Clare, N. J. Halas, Acc. Chem. Res., 2008, 41,
1842-1851. b) P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed,
Acc. Chem. Res., 2008, 41, 1578-1586. c) Q. Qian, X. Huang, X.
Zhang, Z. Xie, Y. Wang, Angew. Chem. Int. Ed., 2013, 52, 10625-
10629. d) D. Jaque, L. Martinez Maestro, B. del Rosal, P. Haro-
Gonzalez, A. Benayas, J. L. Plaza, E. Martin Rodriguez, J. Garcia
Sole, Nanoscale, 2014, 6, 9494-9530. e) L. Cheng, C. Wang, L.
Feng, K. Yang, Z. Liu, Chem. Rev., 2014, 114, 10869-10939. f) Y.
He, S. Liao, H. Jia, Y. Cao, Z. Wang, Y. Wang, Adv. Mater., 2015,
27, 4622-4627. g) Y. Cao, J.-H. Dou, N.-j. Zhao, S. Zhang, Y.-Q.
Zheng, J.-P. Zhang, J.-Y. Wang, J. Pei, Y. Wang, Chem. Mater.,
2017, 29, 718-725.
[2] T. Tang, T. Lin, F. Wang, C. He, J. Phys. Chem. B, 2015, 119,
8176-8183.
[3] a) X.-Y. Wang, F.-D. Zhuang, J.-Y. Wang, J. Pei, Chem.
Commun., 2015, 51, 17532-17535. b) X.-Y. Wang, F.-D. Zhuang,
X.-C. Wang, X.-Y. Cao, J.-Y. Wang, J. Pei, Chem. Commun.,
2015, 51, 4368-4371.
[4] a) M. Gou, S. Li, L. Zhang, L. Li, C. Wang, Z. Su, Chem.
Commun., 2016, 52, 11068-11071. b) K. Ke, L. Lin, H. Liang, X.
Chen, C. Han, J. Li, H.-H. Yang, Chem. Commun., 2015, 51,
6800-6803.
[5] a) D. Meng, S. Yang, L. Guo, G. Li, J. Ge, Y. Huang, C. W.
Bielawski, J. Geng, Chem. Commun., 2014, 50, 14345-14348. b)
S. Li, X. Wang, R. Hu, H. Chen, M. Li, J. Wang, Y. Wang, L. Liu, F.
Lv, X.-J. Liang, S. Wang, Chem. Mater., 2016, 28, 8669-8675. c)
A. L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong, C. Qu, S. Diao,
Z. Deng, X. Hu, B. Zhang, X. Zhang, O. K. Yaghi, Z. R.
Alamparambil, X. Hong, Z. Cheng, H. Dai, Nat. Mater., 2015, 15,
235.
observed upon improving the NIR laser power according to
Figure 5a. We also calculated the maximum output power (Pmax
)
under NIR irradiation with different light power by eq4,
Pmax = (V)2/(4Ri)
eq 4
Here, Ri is the internal resistance of the Peltier device (Ri=2 Ω).
A considerable Seebeck voltage of 49.6 mV and an efficient
output power of 0.308 mW could be reached under light
illumination with a power of 0.9 W. The rapid rise and decline of
thermoelectric voltages were observed through alternatively
turning on and off light ranging from 0.9 W to 0.1 W with a 3 min
interval. Five heating and cooling cycles were tested in order to
illustrate the stability and repeatability of the PTE converter
(Figure 5b). Due to the ease of assembly, a number of Peltier
devices could be readily connected in series to improve the light-
absorbing area that may be practically used in sunlight (Figure
5c). As shown in Figure 5d, with the accumulation of number of
the Peltier devices, the Seebeck voltage undergoes a significant
increase, which notably reaches 0.57 mV when 9 Peltier devices
are connected and exposed to solar simulator. In this regard,
larger voltages are predicted if more Peltier devices are used.
This preliminary application suggests that PACAT-TFB may
function as a key part of thermo-related devices, thus satisfying
those demands on reasonable degradability and reuse.
In conclusion, we demonstrated a successful example of
degradable and recyclable photothermal conversion polymer. A
mild degradation condition was optimized to decompose the
crosslinked polymer in a short time. The well-characterized
degraded products could be repolymerized back to photothermal
conversion polymers. This line of research has laid the
groundwork for exploiting functional materials with low chemical
waste and sustainable utilization. In addition to the application of
photothermal-electrical conversion by the combination with
Peltier devices, it is envisioned that the photothermal conversion
polymer could be readily applied in other areas of photothermal
therapy, thermo-tailored catalysis, controllable CO2 capture, and
water purification.
[6] a) Y. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev.,
2013, 42, 6634-6654. b) A. Wilson, G. Gasparini, S. Matile, Chem.
Soc. Rev., 2014, 43, 1948-1962.
[7] a) S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine,
R. Banerjee, J. Am. Chem. Soc., 2012, 134, 19524-19527. b) Y.
Sun, Y. Sun, Q. Pan, G. Li, B. Han, D. Zeng, Y. Zhang, H. Cheng,
Chem. Commun., 2016, 52, 3000-3002. c) M. Bourgeaux, S. A.
Perez Guarin, W. G. Skene, J. Mater. Chem., 2007, 17, 972-979.
d) S. A. P. Guarin, S. Dufresne, D. Tsang, A. Sylla, W. G. Skene,
J. Mater. Chem., 2007, 17, 2801-2811. e) D. Navarathne, W. G.
Skene, J. Mater. Chem. C, 2013, 1, 6743-6747. f) C. Mallet, M. Le
Borgne, M. Starck, W. G. Skene, Polym. Chem., 2013, 4, 250-254.
g) M. Matsumoto, R. R. Dasari, W. Ji, C. H. Feriante, T. C. Parker,
S. R. Marder, W. R. Dichtel, J. Am. Chem. Soc., 2017, 139, 4999-
5002. h) E. Vitaku, W. R. Dichtel, J. Am. Chem. Soc., 2017, 139,
12911-12914.
[8] T. Lei, M. Guan, J. Liu, H.-C. Lin, R. Pfattner, L. Shaw, A. F.
McGuire, T.-C. Huang, L. Shao, K.-T. Cheng, J. B. H. Tok, Z. Bao,
Proceedings of the National Academy of Sciences of the United
States of America, 2017, 114, 5107-5112.
Acknowledgements
[9] a) C.-J. Weng, Y.-S. Jhuo, K.-Y. Huang, C.-F. Feng, J.-M. Yeh, Y.
Wei, M.-H. Tsai, Macromolecules, 2011, 44, 6067-6076. b) J.
Chen, R. Dong, J. Ge, B. Guo, P. X. Ma, ACS Appl. Mater.
Interfaces, 2015, 7, 28273-28285. c) Q. Chen, X. Yu, Z. Pei, Y.
Yang, Y. Wei, Y. Ji, Chem. Sci., 2017, 8, 724-733.
This work was financially supported by the National Natural
Science Foundation of China (21674127, 21422407, and
51373197). Prof. Long Chen at Tianjin University was
acknowledged for his helpful discussion.
Keywords: Photothermal conversion
Repolymerization Conjugated polymer
electrical conversion
•
Degradation
•
•
• Photothermal-
This article is protected by copyright. All rights reserved.