Journal of the American Chemical Society
Communication
make the crystal unstable. In contrast, at high concentration,
the loss of crystalline ordering upon heating is connected to
decreased linear charge density caused by molecular level
changes within the nanofiber.
1048773), the International Institute for Nanotechnology
(IIN) and Northwestern University. The authors thank S.
Weigand for assistance with the X-ray scattering, M. Seniw for
graphical assistance, M. McClendon for help with rheology, R.
Korkosz in the Kanatzidis group for help with the gas
pycnometer, and J. Boekhoven, J. Ortony and Y. Velichko for
helpful discussions.
CONCLUSIONS
■
We have reported the crystallization of highly charged cationic
supramolecular nanofibers into a hexagonally packed lattice
with remarkably large interfiber spacings, more than 11 times
the fiber diameter. The high charge density required for this
packing distance is made possible by close association of
molecules within the nanofiber and the permanent +1 charge
on each amphiphile. The strong electrostatic repulsions
between molecules in the fibers can be counterbalanced by
strong intermolecular attractions among aromatic groups and
hydrophobic tails in the covalent structure of molecules. The
packing structure and distance between the nanofibers can be
controlled by either temperature or concentration. The
dimensions of these crystalline lattices of supramolecular
filaments could allow the templated growth of hybrid
organic−inorganic hybrid materials on the appropriate length
scale to separate excitons for energy applications.24,25
REFERENCES
■
(1) Needleman, D. J.; Ojeda-Lopez, M. A.; Raviv, U.; Miller, H. P.;
Wilson, L.; Safinya, C. R. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 16099.
(2) Wang, N.; Butler, J. P.; Ingber, D. E. Science 1993, 260, 1124.
(3) Palmer, L. C.; Stupp, S. I. Acc. Chem. Res. 2008, 41, 1674.
(4) Zhang, S. M.; Greenfield, M. A.; Mata, A.; Palmer, L. C.; Bitton,
R.; Mantei, J. R.; Aparicio, C.; Olvera de la Cruz, M.; Stupp, S. I. Nat.
Mater. 2010, 9, 594.
(5) Berns, E. J.; Sur, S.; Pan, L.; Goldberger, J. E.; Suresh, S.; Zhang,
S.; Kessler, J. A.; Stupp, S. I. Biomaterials 2014, 35, 185.
(6) Dang, X.; Yi, H.; Ham, M.-H.; Qi, J.; Yun, D. S.; Ladewski, R.;
Strano, M. S.; Hammond, P. T.; Belcher, A. M. Nat. Nanotechnol.
2011, 6, 377.
(7) Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813.
(8) Parsegian, V. A.; Brenner, S. L. Nature 1976, 259, 632.
(9) Li, T.; Winans, R. E.; Lee, B. Langmuir 2011, 27, 10929.
(10) Li, T.; Zan, X. J.; Winans, R. E.; Wang, Q.; Lee, B. Angew. Chem.,
Int. Ed. 2013, 52, 6638.
ASSOCIATED CONTENT
* Supporting Information
■
S
́
(11) Valery, C.; Paternostre, M.; Robert, B.; Gulik-Krzywicki, T.;
Detailed synthesis, spectroscopic characterization, and X-ray
scattering curves. This material is available free of charge via the
Narayanan, T.; Dedieu, J.-C.; Keller, G.; Torres, M.-L.; Cherif-Cheikh,
R.; Calvo, P.; Artzner, F. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 10258.
(12) Oosawa, F. Biopolymers 1968, 6, 1633.
(13) Safinya, C. R.; Li, Y. Science 2010, 327, 529.
(14) Solis, F. J.; Olvera de La Cruz, M. Phys. Rev. E 1999, 60, 4496.
(15) Cui, H.; Pashuck, E. T.; Velichko, Y. S.; Weigand, S. J.;
Cheetham, A. G.; Newcomb, C. J.; Stupp, S. I. Science 2010, 327, 555.
(16) Yao, Z. W.; Olvera de la Cruz, M. Phys. Rev. E 2013, 87, 042605.
(17) Kunitake, T.; Okahata, Y.; Shimomura, M.; Yasunami, S.;
Takarabe, K. J. Am. Chem. Soc. 1981, 103, 5401.
AUTHOR INFORMATION
■
Corresponding Authors
Author Contributions
⊥These authors contributed equally.
(18) Ikeda, T.; Tsutsumi, O. Science 1995, 268, 1873.
(19) Svergun, D. I.; Koch, M. H. J. Rep. Prog. Phys. 2003, 66, 1735.
(20) Maier, E.; Krause, R.; Deggelmann, M.; Hagenbuchle, M.;
Weber, R.; Fraden, S. Macromolecules 1992, 25, 1125.
Notes
The authors declare no competing financial interest.
(21) Ermolina, I.; Morgan, H.; Green, N. G.; Milner, J. J.; Feldman,
Y. Biochim. Biophys. Acta, Gen. Subj. 2003, 1622, 57.
(22) Gelbart, W.; Bruinsma, R.; Pincus, P.; Parsegian, V. Phys. Today
2000, 53, 38.
(23) Spaar, A.; Salditt, T. Biophys. J. 2003, 85, 1576.
(24) Sofos, M.; Stone, D. A.; Goswami, D. K.; Okasinski, J. S.; Jin, H.;
Bedzyk, M. J.; Stupp, S. I. J. Phys. Chem. C 2008, 112, 2881.
(25) Briseno, A. L.; Holcombe, T. W.; Boukai, A. I.; Garnett, E. C.;
ACKNOWLEDGMENTS
■
Materials design and synthesis was supported by the Non-
equilibrium Energy Research Center (NERC) at Northwestern
University, funded by the US Department of Energy (DOE),
Office of Basic Energy Sciences under award no. DE-
SC0000989. Characterization was supported by the U.S.
Department of Energy, Office of Basic Energy Sciences under
award no. (DE-FG02-00ER45810). The X-ray scattering
experiments and analysis were supported by DOE-BES DE-
FG02-08ER46539. S.K. was funded by AFOSR (FA9550-11-1-
0275). SAXS experiments were performed at the DuPont-
Northwestern-Dow Collaborative Access Team (DND-CAT)
located at Sector 5 of the Advanced Photon Source (APS).
DND-CAT is supported by E.I. DuPont de Nemours & Co.,
The Dow Chemical Company, and Northwestern University.
Use of the APS, an Office of Science User Facility operated for
the U.S. Department of Energy (DOE) Office of Science by
Argonne National Laboratory, was supported by the U.S. DOE
under contract no. DE-AC02-06CH11357. This work made use
of the Biological Imaging Facility (TEM) and the Keck
Biophysics Facility (optical spectroscopy). This work also relied
on NMR and mass spectrometry instrumentations in the
Integrated Molecular Structure Education and Research Center
(IMSERC) which were funded by the NSF (NSF CHE-
́
Shelton, S. W.; Frechet, J. J. M.; Yang, P. Nano Lett. 2010, 10, 334.
D
dx.doi.org/10.1021/ja5082519 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX