comparison, PhCO22Na+ hardly shows any interaction with AC
(Dd , 0.1 ppm), which demonstrates the positive dendritic effect.
Notes and references
{ In an NMR tube, 5 mg of 9 were introduced in 0.5 mL D2O, then AC
was progressively added. The titration spans from 0 to 320 equivalents of
AC per dendrimer 9 (Fig. 1, the shifts of the peripheral protons of 9 are
framed). The shifts of the four signals of AC are represented and numbered
from 1 to 4.
1 V. Percec, G. Johansson, G. Ungar and J. P. Zhou, J. Am. Chem. Soc.,
1996, 18, 9855; F. Zeng and S. C. Zimmermann, Chem. Rev., 1997, 97,
1681; V. Balzani, S. Campana, G. Denti, A. Juris, S. Serroni and
M. Venturi, Acc. Chem. Res., 1998, 31, 26; O. A. Matthews,
A. N. Shipway and J. F. Stoddart, Prog. Polym. Sci., 1998, 23, 1;
G. R. Newkome and C. N. Moorefield, Chem. Rev., 1999, 99, 1689;
G. R. Newkome, C. N. Moorefield and F. Vo¨gtle, Wiley-VCH,
Weinheim, 2001.
2 J. F. G. A. Jansen, E. M. M. de Brabander-van den Berg and
E. W. Meijer, Science, 1994, 266, 1226; A. W. Bosman, E. W. Jensen
and E. W. Meijer, Chem. Rev., 1999, 99, 1665.
3 C. Vale´rio, J.-L. Fillaut, J. Ruiz, J. Guittard, J.-C. Blais and D. Astruc,
J. Am. Chem. Soc., 1997, 119, 2588; D. Astruc, M.-C. Daniel and
J. Ruiz, Chem. Commun., 2004, 2637; M.-C. Daniel and D. Astruc,
Chem. Rev., 2004, 104, 293.
Fig. 1 1H NMR titration of AC with 9: (a) 9 as its Na+ salt; (b) 9 + 20 eq.
of AC; (c) 9 + 40 eq. of AC; (d) 9 + 60 eq. of AC; (e) 9 + 80 eq. of AC; (f) 9
+ 100 eq. of AC; (g) 9 + 200 eq. of AC; (h) 9 + 300 eq. of AC (similar to
AC).
4 M. Albrecht, N. J. Hovestad, J. Boersma and G. van Koten, Chem.–
Eur. J., 2001, 7, 1289; A. W. Kleij, A. Ford, J. T. B. H. Jastrzebski and
G. van Koten, in Dendrimers and Other Dendritic Polymers, ed. J. M. J.
Fre´chet and D. A. Tomalia, Wiley, New York, 2002, 185.
5 D. Astruc, C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron., 1996,
322, 757 (review); C. Kojima, K. Kono, K. Maruyama and T. Takagishi,
Bioconjugate Chem., 2000, 11, 910; K. Sadler and J. P. Tam,
J. Biotechnol., 2002, 90, 195; M. J. Cloninger, Curr. Opin. Chem.
Biol., 2002, 6, 742; S. E. Stiriba, H. Frey and R. Haag, Angew. Chem.,
Int. Ed., 2002, 41, 1329; M. W. Grinstaff, Chem.–Eur. J., 2002, 8, 2838;
U. Boas and P. M. H. Heegarard, Chem. Soc. Rev., 2004, 33, 43;
C. C. Lee, J. A. Mac Kay, J. M. J. Fre´chet and F. Szoka, Nat.
Biotechnol., 2005, 23, 1517.
6 D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin,
J. Roeck and P. Smith, Macromolecules, 1986, 19, 2466; D. A. Tomalia,
A. N. Naylor and N. A. Goddard, III, Angew. Chem., Int. Ed. Engl.,
1990, 102, 119. For the first water-soluble dendrimers, see also ref. 12.
7 N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey and
J. W. Weener, J. Controlled Release, 2000, 65, 133.
8 R. Jevprasesphant, J. Penny, R. Jalal, D. Attwood, N. B. McKown and
A. D’Emmanuele, Int. J. Pharm., 2003, 252, 263.
9 (a) O. Voss, Naunyn–Schmiedebergs Arch. Exp. Pathol. Pharmakol.,
1926, 116, 367; (b) E. A. Carmichael and F. R. Fraser, Heart, 1933, 16,
263.
10 (a) B. A. Houssay and O. Orias, C. R. Seances Soc. Biol. Ses Fil., 1934,
117, 61; (b) M. Beauvallet, C. R. Seances Soc. Biol. Ses Fil., 1938, 127,
213.
11 D. M. Sletten, K. K. Nickander and P. A. Low, J. Neurol. Sci., 2005,
234, 1.
Fig. 2 Arbitrary representation of the ionic aggregates with 2 AC at the
termini of 9, taking into account the mutual influence of the AC and
benzoate groups on the 1H NMR shifts and lack of dendrimer size
increase with AC (the AC molecules, whose ammonium parts form an
aggregate with the carboxylate and chloride anions, are also folding back
towards the hydrophobic dendritic interior).
signals upon dendrimer binding, suggest encapsulation of AC in
the hydrophobic dendrimer interior (near the periphery, back
folding of the dendrimer tethers being not excluded).
12 G. R. Newkome, Z. Yao, G. R. Baker and V. K. Gupta, J. Org. Chem.,
1985, 50, 2003.
The diffusion coefficient of AC increases until a concentration
matching approximately 162 (¡5) AC per dendrimer, confirming
the interaction of each carboxylate termini with two AC molecules,
before stagnating at higher AC concentrations.
13 (a) V. Sartor, L. Djakovitch, J.-L. Fillaut, F. Moulines, F. Neveu,
V. Marvaud, J. Guittard, J.-C. Blais and D. Astruc, J. Am. Chem. Soc.,
1999, 121, 2929; (b) J. Ruiz, G. Lafuente, S. Marcen, C. Ornelas,
S. Lazare, J.-C. Blais, E. Cloutet and D. Astruc, J. Am. Chem. Soc.,
2003, 125, 7250; (c) C. Ornelas, D. Me´ry, J. Ruiz, J.-C. Blais, E. Cloutet
and D. Astruc, Angew. Chem., Int. Ed., 2005, 44, 7399.
The observed behavior of the assembly 9 + AC is best taken
into account by the reversible formation of ionic bonds between
the dendrimer-81-carboxylate 9 and the AC cations as contact ion
pairs.16 The second stage most probably also involves agglomera-
tion of additional charges of AC chloride to reversibly form an
aggregate at each tether terminus. This should be due to the dual
location of the anionic charge, delocalized onto both carboxylate
oxygen atoms of the carboxylate group, that can form a five-
component aggregate (one chloride anion in addition to the
two oxygen atoms and the two AC cations, see Fig. 2). By
14 A. W. van der Made, P. W. N. M. van Leeuwen, J. C. de Wilde and
R. A. C. Brandes, Adv. Mater., 1993, 5, 466.
15 (a) A. J. Charlton, N. J. Baxter, M. L. Khan, A. J. G. Moir, E. Haslam,
A. P. Davies and M. P. Williamson, J. Agric. Food Chem., 2002, 50,
1593; (b) C. Simon, K. Barathieu, M. Laguerre, J. M. Schmitter,
E. Fouquet, I. Pianet and E. J. Dufourc, Biochemistry, 2003, 42, 10385.
16 (a) J. Smid, in Ions and Ion Pairs in Organic Reactions, ed. M. Schwarc,
Wiley, New York, 1972, vol. 1, ch. 3; (b) The Organic Chemistry of
Electrolyte Solutions, ed. J. E. Gordon, Wiley, New York, 1975; (c)
J. D. Simon and K. S. Peters, Acc. Chem. Res., 1984, 17, 277; (d)
A. Loupy, B. Tchoubar and D. Astruc, Chem. Rev., 1992, 92, 1141.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 5093–5095 | 5095