Higashiyama and K. Mikami, Tetrahedron Lett., 1998, 39, 1199; T.-P.
Loh and X.-R. Li, Angew. Chem., Int. Ed. Engl., 1997, 36, 980; G.
Foulard, T. Brigaud and C. Portella, J. Org. Chem., 1997, 62, 9107; A.
Abouabdellah, J.-P. Bégué, D. Bonnet-Delpon and T. T. T. Nga, J. Org.
Chem., 1997, 62, 8826; P. Bravo, A. Farina, V. P. Kukhar, A. L.
Markovsky, S. V. Meille, V. A. Soloshonok, A. E. Sorochinsky, F.
Viani, M. Zanda and C. Zappala´, J. Org. Chem., 1997, 62, 3424; V. A.
Soloshonok and T. Ono, J. Org. Chem., 1997, 62, 3030; S. Hiraoka, T.
Yamazaki and T. Kitazume, Chem. Commun., 1997, 1497; V. A.
Soloshonok, D. V. Avilov, V. P. Kukhar, L. V. Meervelt and N.
Mischenko, Tetrahedron Lett., 1997, 38, 4671; Y. Yokoyama and K.
Mochida, Tetrahedron Lett., 1997, 38, 3443; T. Katagiri, H. Ihara, M.
Takahashi, S. Kashino, K. Furuhashi and K. Uneyama, Tetrahedron:
Asymmetry, 1997, 8, 2933.
2 For boron enolates, see: K. Iseki, S. Oishi and Y. Kobayashi, Chem.
Pharm. Bull., 1996, 44, 2003; K. Iseki, S. Oishi and Y. Kobayashi,
Tetrahedron, 1996, 52, 71; Y. Makino, K. Iseki, K. Fujii, S. Oishi, T.
Hirano and Y. Kobayashi, Tetrahedron Lett., 1995, 36, 6527; K. Iseki,
S. Oishi and Y. Kobayashi, Chem. Lett., 1994, 1135. For a lithium
enolate, see: D. V. Patel, K. Rielly-Gauvin and D. E. Ryono,
Tetrahedron Lett., 1988, 29, 4665.
OH
OLi
i
CF3
OEt
CF3
OEt
1a
1b
Scheme 2 Reagents and conditions: i, BunLi (1.5 equiv.), hexane, 0 °C, 15
min
p-Cl = p-H = p-Me = p-MeO). The reaction of 1a with the
mixture of aliphatic enamines 2i and 4-(3-methylbut-2-en-
2-yl)morphorine 4 (29:71) (1 equiv.) resulted in the exclusive
formation of 3h in 25% yield, and none of the product derived
from enamine 4 was detected in the reaction mixture (entry 16).
According to these results, the steric effect of the substituents at
the b-carbon of the enamines is more important for the the
reaction than the electronic effect of the substituents at the
a-carbon.
The formation of 3 can be explained by assuming the
mechanism shown in Scheme 1. It is significant that the reaction
requires only an equimolar amount of enamine, which may act
as a base, counter ammonium cation and carbon nucleophile.
More significantly, the reaction of lithium alcoholate 1b§
with the enamine 2a did not proceed at all; the acetophenone
was recovered in quantitative yield (Scheme 2). According to
this result, the ammonium cation, which is generated via
protonation of the enamine, plays a very important role in the
effective generation of trifluoroacetaldehyde in the reaction.
In conclusion, we have demonstrated the enamine-assisted in
situ generation of trifluoroacetaldehyde and its reaction with
enamines, producing the corresponding b-hydroxy-
b-trifluoromethyl ketones 3 in high yields. The present method
can serve as a synthetically useful entry to b-hydroxy-
b-trifluoromethyl ketones, with simple manipulations and high
yields of the products. Application of the present methodology
to stereoselective synthesis using asymmetric secondary amines
or b-monosubstituted enamines is currently in progress in our
laboratory.
3 (a) K. Mikami, T. Yajima, T. Takasaki, S. Matsukawa, M. Terada, T.
Uchimaru and M. Maruta, Tetrahedron, 1996, 52, 85; (b) K. Mikami, T.
Takasaki, S. Matsukawa and M. Maruta, Synlett, 1995, 1057.
4 T. Yamazaki, K. Takita and N. Ishikawa, J. Fluorine Chem., 1985, 30,
357.
5 For an asymmetric Friedel–Crafts reaction, see: A. Ishii, V. A.
Soloshonok and K. Mikami, 74th National Meeting of the Chemical
Society of Japan, Kyoto, March, 1998, Abstr. No. 1D641.
6 R. Pautrat, J. Marteau and R. Cheritat, Bull. Soc. Chim. Fr., 1968, 1182;
K. Ogawa, T. Nagai, M. Nonomura, T. Takagi, M. Koyama, A. Ando,
T. Miki and I. Kumadaki, Chem. Pharm. Bull., 1991, 39, 1707. For an
asymmetric reaction, see: K. Mikami, T. Yazima, N. Siree, M. Terada,
Y. Suzuki and I. Kobayashi, Synlett, 1996, 837; K. Mikami, T. Yajima,
M. Terada, E. Kato and M. Maruta, Tetrahedron: Asymmetry, 1994, 5,
1087; K. Mikami, T. Yajima, M. Terada and T. Uchimaru, Tetrahedron
Lett., 1993, 34, 7591 and ref. 3(a).
7 L. Lévêque, M. L. Blanc and R. Pastor, Tetrahedron Lett., 1997, 38,
6001. For an asymmetric reaction, see: K. Mikami, T. Takasaki, T.
Yazima, S. Matsukawa and M. Terada, 72nd National Meeting of the
Chemical Society of Japan, Tokyo, March, 1997, Abstr. No. 4H332.
8 M. Braid, H. Isersone and F. Lawlore, J. Am. Chem. Soc., 1954, 76,
4027; A. Henne, R. Pelley and R. Alm, J. Am. Chem. Soc., 1950, 72,
3370; H. Shechter and F. Conrad, J. Am. Chem. Soc., 1950, 72, 3371.
9 For carbon nucleophiles, see: A. Ishii, K. Higashiyama and K. Mikami,
Synlett, 1997, 1381; T.-P. Loh and X.-R. Li, Chem. Commun., 1996,
1929; T. Ishihara, H. Hayashi and H. Yamanaka, Tetrahedron Lett.,
1993, 34, 5777; T. Kubota, M. Iijima and T. Tanaka, Tetrahedron Lett.,
1992, 33, 1351; B. Imperiali and R. H. Abeles, Tetrahedron Lett., 1986,
27, 135; A. Guy, A. Lobgeois and M. Lemaire, J. Fluorine Chem., 1986,
32 361; D. J. Cook, O. R. Pierce and E. T. McBee, J. Am. Chem. Soc.,
1954, 76, 83. For phosphorus nucleophiles, see: Y. Shen and M. Qi,
J. Chem. Soc., Perkin Trans. 1, 1994, 1179. For amino acids and
nucleotides, see: H. Yin, R. J. Crowder, J. P. Jones and M. W. Anders,
Chem. Res. Toxicol., 1996, 9, 140.
We thank Dr H. Muramatsu for valuable discussions.
Notes and References
† E-mail kfunabik@apchem.gifu-u.ac.jp
‡
Recent reports have presented the coupling reaction of trifluor-
oacetaldehyde ethyl hemiacetal, which is considered as an equivalent of
trifluoroacetaldehyde. These methods, however, require the use of an excess
amount of reagents and/or of limited solvents, the formation of by-products,
and relatively low yields of the products, see ref. 9.
§ Kitazume and Yamazaki reported that the tetrahedral form of 1b is too
stable to be converted to trifluoroacetaldehyde due to the strong electron-
withdrawing effect of a trifluoromethyl group, see ref 10.
10 S. Kaneko, T. Yamazaki and T. Kitazume, J. Org. Chem., 1993, 58,
2302.
1 For recent examples, see: K. Uneyama, J. Hao and H. Amii,
Tetrahedron Lett., 1998, 39, 4079; A. Ishii, F. Miyamoto, K.
Received in Cambridge, UK, 29th June 1998; 8/04922J
2052
Chem. Commun., 1998