Journal of the American Chemical Society
Article
(15) The commonly used formal potential of the redox couple of
ferrocenium/ferrocene (Fc+/Fc) in the Fermi scale is −5.1 eV, which
is calculated on the basis of an approximation neglecting solvent effects
using a work function of 4.46 eV for the normal hydrogen electrode
(NHE) and an electrochemical potential of 0.64 V for Fc+/Fc versus
NHE. See: Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan,
G. C. Adv. Mater. 2011, 23, 2367−2371.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Ms. Hoi Shan Chan (The Chinese University of
Hong Kong) for the single-crystal crystallography. This work
was supported by the Research Grants Council of Hong Kong
(CRF C4030-14G) and the Chinese University of Hong Kong
(the Faculty Strategic Development Scheme from the Faculty
of Science and the One-Off Funding for Research from
Research Committee).
(16) (a) Wood, J. d.; Jellison, K. L.; Finke, A. D.; Wang, L.; Plunkett,
K. N. J. Am. Chem. Soc. 2012, 134, 15783−15789. (b) Chaolumen;
Murata, M.; Sugano, Y.; Wakamiya, A.; Murata, Y. Angew. Chem., Int.
Ed. 2015, 54, 9308−9312.
(17) Su, Y.; Wang, C.; Xie, W.; Xie, F.; Chen, J.; Zhao, N.; Xu, J. ACS
Appl. Mater. Interfaces 2011, 3, 4662−4667.
(18) Liu, D.; He, Z.; Su, Y.; Diao, Y.; Mannsfeld, S. C. B.; Bao, Z.; Xu,
J.; Miao, Q. Adv. Mater. 2014, 26, 7190−7196.
REFERENCES
■
(19) Miao, Q.; Chi, X.; Xiao, S.; Zeis, R.; Lefenfeld, M.; Steigerwald,
M. L.; Siegrist, T.; Nuckolls, C. J. Am. Chem. Soc. 2006, 128, 1340−
1345.
(1) For recent examples of CP-PAHs, see: (a) Chase, D. T.; Rose, B.
D.; McClintock, S. P.; Zakharov, L. N.; Haley, M. M. Angew. Chem.,
Int. Ed. 2011, 50, 1127−1130. (b) Chase, D. T.; Fix, A. G.; Rose, B. D.;
Weber, C. D.; Nobusue, S.; Stockwell, C. E.; Zakharov, L. N.;
Lonergan, M. C.; Haley, M. M. Angew. Chem., Int. Ed. 2011, 50,
11103−11106. (c) Shimizu, A.; Tobe, Y. Angew. Chem., Int. Ed. 2011,
50, 6906−6910. (d) Zhang, Q.; Kawasumi, K.; Segawa, Y.; Itami, K.;
Scott, L. T. J. Am. Chem. Soc. 2012, 134, 15664−15667. (e) London,
G.; von Wantoch Rekowski, M.; Dumele, O.; Schweizer, W. B.;
Gisselbrecht, J.-P.; Boudon, C.; Diederich, F. Chem. Sci. 2014, 5, 965−
972. (f) Liu, E.-C.; Chen, M.-K.; Li, J.-Y.; Wu, Y. T. Chem. - Eur. J.
2015, 21, 4755−4761. (g) Sbargoud, K.; Mamada, M.; Marrot, J.;
Tokito, S.; Yassar, A.; Frigoli, M. Chem. Sci. 2015, 6, 3402−3409.
(h) Nobusue, S.; Miyoshi, H.; Shimizu, A.; Hisaki, I.; Fukuda, K.;
Nakano, M.; Tobe, Y. Angew. Chem., Int. Ed. 2015, 54, 2090−2094.
(i) Dutta, A. K.; Linden, A.; Zoppi, L.; Baldridge, K. K.; Siegel, J. S.
Angew. Chem., Int. Ed. 2015, 54, 10792−10796.
(20) Lim, S.-H.; Bjorklund, T. G.; Spano, F. C.; Bardeen, J. C. Phys.
Rev. Lett. 2004, 92, 107402.
(21) (a) Kawase, T.; Fujiwara, T.; Kitamura, C.; Konishi, A.; Hirao,
Y.; Matsumoto, K.; Kurata, H.; Kubo, T.; Shinamura, S.; Mori, H.;
Miyazaki, E.; Takimiya, K. Angew. Chem., Int. Ed. 2010, 49, 7728−
7732. (b) Chase, D. T.; Fix, A. G.; Kang, S. J.; Rose, B. D.; Weber, C.
D.; Zhong, Y.; Zakharov, L. N.; Lonergan, M. C.; Nuckolls, C.; Haley,
M. M. J. Am. Chem. Soc. 2012, 134, 10349−10352. (c) Nishida, J.-i.;
Tsukaguchi, S.; Yamashita, Y. Chem. - Eur. J. 2012, 18, 8964−8970.
(d) Xia, H.; Liu, D.; Xu, X.; Miao, Q. Chem. Commun. 2013, 49,
4301−4303.
(22) Ball, M.; Zhong, Y.; Wu, Y.; Schenck, C.; Ng, F.; Steigerwald,
M.; Xiao, S.; Nuckolls, C. Acc. Chem. Res. 2015, 48, 267−276.
(23) Xiao, S.; Myers, M.; Miao, Q.; Sanaur, S.; Pang, K.; Steigerwald,
M. L.; Nuckolls, C. Angew. Chem., Int. Ed. 2005, 44, 7390−7394.
(2) Hseuh, H.-H.; Hsu, M.-Y.; Wu, T.-L.; Liu, R.-S. J. Org. Chem.
2009, 74, 8448−8451.
(3) (a) Pummerer, R.; Ulrich, H. M. Ber. Dtsch. Chem. Ges. 1925, 58,
1806−1808. (b) Schlenk, W.; Karplus, M. Ber. Dtsch. Chem. Ges. 1928,
61, 1675−1680.
(4) Lee, H.; Zhang, Y.; Zhang, L.; Mirabito, T.; Burnett, E. K.;
Trahan, S.; Mohebbi, A. R.; Mannsfeld, S. C. B.; Wudl, F.; Briseno, A.
L. J. Mater. Chem. C 2014, 2, 3361−3366.
(24) Gsanger, M.; Oh, J. H.; Konemann, M.; Hoffken, H. W.; Krause,
̈
̈
̈
A.-M.; Bao, Z.; Wurthner, F. Angew. Chem., Int. Ed. 2010, 49, 740−
̈
743.
(25) Shan, L.; Liu, D.; Li, H.; Xu, X.; Shan, B.; Xu, J.-B.; Miao, Q.
Adv. Mater. 2015, 27, 3418−3423.
(5) Dithiarubicene, which has two benzene rings in rubicene replaced
by two thiophene rings, was also recently reported. See: Mohebbi, A.
R.; Wudl, F. Chem. - Eur. J. 2011, 17, 2642−2646.
(6) For recent examples of double helicenes, see: (a) Fujikawa, T.;
Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2015, 137, 7763−7768.
(b) Kashihara, H.; Asada, T.; Kamikawa, K. Chem. - Eur. J. 2015, 21,
6523−6527. (c) Lutke Eversloh, C.; Liu, Z.; Muller, B.; Stangl, M.; Li,
̈
̈
C.; Mullen, K. Org. Lett. 2011, 13, 5528−5531.
̈
(7) Dougherty, K. J.; Kraml, C. M.; Byrne, N.; Porras, J. A.; Bernhard,
S.; Mague, J. T.; Pascal, R. A., Jr Tetrahedron 2015, 71, 1694−1699.
(8) White, D. M. J. Org. Chem. 1974, 39, 1951−1952.
(9) Merlet, S.; Birau, M.; Wang, Z. Y. Org. Lett. 2002, 4, 2157−2159.
(10) For examples of synthesis of polycylic arenes using the Corey−
Fuchs reaction with similar conditions, see: (a) Donovan, P. M.; Scott,
L. T. J. Am. Chem. Soc. 2004, 126, 3108−3112. (b) Loo, Y.-L.;
Hiszpanski, A. M.; Kim, B.; Wei, S.; Chiu, C.-Y.; Steigerwald, M. L.;
Nuckolls, C. Org. Lett. 2010, 12, 4840−4843. (c) Cheung, K. Y.; Xu,
X.; Miao, Q. J. Am. Chem. Soc. 2015, 137, 3910−3914.
(11) (a) Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am.
Chem. Soc. 2001, 123, 9482−9483. (b) Anthony, J. E.; Eaton, D. L.;
Parkin, S. R. Org. Lett. 2002, 4, 15−18.
(12) Luo, J.; Xu, X.; Mao, R.; Miao, Q. J. Am. Chem. Soc. 2012, 134,
13796−13803.
(13) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−5652.
(b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989,
157, 200−206. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens.
Matter Mater. Phys. 1988, 37, 785−789.
(14) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic
Chemistry; University Science Books: Sausalito, CA, 2004; Chapter 7.
16208
J. Am. Chem. Soc. 2015, 137, 16203−16208