Organic Letters
Letter
ACKNOWLEDGMENTS
■
This work was supported by the Basic Research Grant
(2017R1A2B2006605), Creative Materials Discovery Program
(2017M3D1A1039558), and NRF-2016-Global Ph.D. Fellow-
ship Program (2016H1A2A1906550 to T.K.) through the
National Research Foundation of Korea (NRF).
REFERENCES
■
(1) Kalyani, N. T.; Swart, H.; Dhoble, S. J. Principles and Applications of
Organic Light Emitting Diodes (OLEDs); Elsevier: Amsterdam, 2017.
(2) (a) Swager, T. M. Acc. Chem. Res. 2008, 41, 1181−1189.
(b) Thomas, S. W., III; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107,
1339−1386. (c) Bunz, U. H. F.; Seehafer, K.; Bender, M.; Porz, M.
Chem. Soc. Rev. 2015, 44, 4322−4336.
(3) Yoon, B.; Lee, J.; Park, I. S.; Jeon, S.; Lee, J.; Kim, J.-M. J. Mater.
Chem. C 2013, 1, 2388−2403.
Figure 6. X-ray structures of triazoliptycenes in the (a) P21/c space
(4) (a) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem., Int.
Ed. 2003, 42, 1210−1250. (b) Wheeler, S. E. Acc. Chem. Res. 2013, 46,
1029−1038.
group (1-H), (b) P1 space group (1-OMe), and (c) I4/m space group
̅
(1-NO2). Capped-stick models were constructed with crystallo-
graphically determined atomic coordinates, and overlaid with space-
filling models to highlight closest intermolecular contacts in the crystal
packing.
(5) Hinoue, T.; Shigenoi, Y.; Sugino, M.; Mizobe, Y.; Hisaki, I.; Miyata,
M.; Tohnai, N. Chem. - Eur. J. 2012, 18, 4634−4643.
(6) (a) Turro, N. J. Modern Molecular Photochemistry; University
Science Books: Sausalito, CA, 1991. (b) Lakowicz, J. R. Principles of
Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2008.
(7) (a) Wakamiya, A.; Mori, K.; Yamaguchi, S. Angew. Chem., Int. Ed.
2007, 46, 4273−4276. (b) Iida, A.; Yamaguchi, S. Chem. Commun. 2009,
3002−3004. (c) Ozdemir, T.; Atilgan, S.; Kutuk, I.; Yildirim, L. T.;
Tulek, A.; Bayindir, M.; Akkaya, E. U. Org. Lett. 2009, 11, 2105−2107.
(d) Pan, C.; Zhao, C.; Takeuchi, M.; Sugiyasu, K. Chem. - Asian J. 2015,
10, 1820−1835.
In summary, our work described here convincingly showcases
the conceptual appeal and practical utility of the iptycene scaffold
as an electronic controller group in synthesis and steric controller
group in assembly. To suppress interchromophore electronic
coupling or to enhance solid-state fluorescence, previous work
elsewhere focused on the following: (i) introducing bulky
substituents,2,7 or spiro-junctions to the fluorogenic core;19 (ii)
encapsulating fluorophores within hosts;8 (iii) appending
peripheral groups for aggregation-induced emission (AIE).20 It
is yet to be seen whether our approach based on this “pluggable”
iptycene could be extended and generalized for other types of
fluorophores. Efforts are underway in our laboratory to refine and
expand the scope of this chemistry.
(8) Frampton, M. J.; Anderson, H. L. Angew. Chem., Int. Ed. 2007, 46,
1028−1064 and references cited therein.
(9) (a) Bartlett, P. D.; Ryan, M. J.; Cohen, S. G. J. Am. Chem. Soc. 1942,
64, 2649−2653. (b) Bartlett, P. D.; Cohen, S. G.; Cotman, J. D., Jr.;
Kornblum, N.; Landry, J. R.; Lewis, E. S. J. Am. Chem. Soc. 1950, 72,
1003−1004. (c) Bartlett, P. D.; Lewis, E. S. J. Am. Chem. Soc. 1950, 72,
1005−1009.
(10) Chen, C.-F.; Ma, Y.-X. Iptycenes Chemistry: From Synthesis to
Applications; Springer: Berlin, 2013 and references cited therein.
(11) (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47,
6338−6361. (b) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534−1544.
(c) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247−9301.
(12) Belskaya, N.; Subbotina, J.; Lesogorova, S. Top. Heterocycl. Chem.
2014, 40, 51−116.
(13) (a) Ueda, S.; Su, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011,
50, 8944−8947. (b) Taillefer, M.; Xia, N.; Ouali, A. Angew. Chem., Int.
Ed. 2007, 46, 934−936. (c) Zhang, Y.; Ye, X.; Petersen, J. L.; Li, M.; Shi,
X. J. Org. Chem. 2015, 80, 3664−3669. (d) Liu, Y.; Yan, W.; Chen, Y.;
Petersen, J. L.; Shi, X. Org. Lett. 2008, 10, 5389−5392. (e) Yan, W.;
Wang, Q.; Lin, Q.; Li, M.; Petersen, J. L.; Shi, X. Chem. - Eur. J. 2011, 17,
5011−5018.
(14) (a) Kim, S.; Jo, J.; Lee, D. Org. Lett. 2016, 18, 4530−4533.
(b) Park, B. G.; Hong, D. H.; Lee, H. Y.; Lee, M.; Lee, D. Chem. - Eur. J.
2016, 22, 6610−6616. (c) Jo, J.; Lee, H. Y.; Liu, W.; Olasz, A.; Chen, C.-
H.; Lee, D. J. Am. Chem. Soc. 2012, 134, 16000−16007.
(15) (a) Yang, J.-S.; Yan, J.-L. Chem. Commun. 2008, 1501−1512.
(b) Chong, J. H.; MacLachlan, M. J. Chem. Soc. Rev. 2009, 38, 3301−
3315.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Synthesis and characterization; additional spectroscopic
Accession Codes
supplementary crystallographic data for this paper. These data
or by contacting The Cambridge Crystallographic Data Centre,
12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223
336033.
(16) Mondal, R.; Shah, B. K.; Neckers, D. C. J. Am. Chem. Soc. 2006,
AUTHOR INFORMATION
128, 9612−9613.
(17) Reichardt, C. Chem. Rev. 1994, 94, 2319−2358.
(18) Apparently, solidified triazoliptycene experiences essentially the
identical local dielectric, regardless of whether the sample is prepared as
powder, drop-cast, or spin-cast film.
■
Corresponding Author
ORCID
(19) Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.;
Salbeck, J. Chem. Rev. 2007, 107, 1011−1065.
(20) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z.
Chem. Rev. 2015, 115, 11718−11940.
Notes
The authors declare no competing financial interest.
6383
Org. Lett. 2017, 19, 6380−6383