Oxidative Stress and Quorum Sensing Regulator LasR
ulence of clinical Pseudomonas aeruginosa populations. Proc. Natl. Acad.
Sci. U.S.A. 106, 6339–6344
5,5Ј-dithiobis(2-nitrobenzoic acid): a reexamination. Anal. Biochem. 94,
75–81
7. Smith, R. S., and Iglewski, B. H. (2003) P. aeruginosa quorum-sensing sys- 27. Baranger, A. M., Palmer, C. R., Hamm, M. K., Giebler, H. A., Brauweiler,
tems and virulence. Curr. Opin. Microbiol. 6, 56–60
8. Fuqua, C., and Greenberg, E. P. (2002) Listening in on bacteria: acyl-
homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3, 685–695
9. Dubern, J. F., and Diggle, S. P. (2008) Quorum sensing by 2-alkyl-4-quino-
lones in Pseudomonas aeruginosa and other bacterial species. Mol. Biosyst.
4, 882–888
A., Nyborg, J. K., and Schepartz, A. (1995) Mechanism of DNA-binding
enhancement by the human T-cell leukaemia virus transactivator Tax.
Nature 376, 606–608
28. Chen, P. R., Bae, T., Williams, W. A., Duguid, E. M., Rice, P. A., Schnee-
wind, O., and He, C. (2006) An oxidation-sensing mechanism is used by
the global regulator MgrA in Staphylococcus aureus. Nat. Chem. Biol. 2,
591–595
10. Pesci, E. C., Pearson, J. P., Seed, P. C., and Iglewski, B. H. (1997) Regulation
of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 29. Ji, Q., Zhang, L., Sun, F., Deng, X., Liang, H., Bae, T., and He, C. (2012)
179, 3127–3132
Staphylococcus aureus CymR is a new thiol-based oxidation-sensing reg-
ulator of stress resistance and oxidative response. J. Biol. Chem. 287,
21102–21109
11. Churchill, M. E., and Chen, L. (2011) Structural basis of acyl-homoserine
lactone-dependent signaling. Chem. Rev. 111, 68–85
12. Galloway, W. R. J. D., Hodgkinson, J. T., Bowden, S. D., Welch, M., and 30. Schook, P. O., Stohl, E. A., Criss, A. K., and Seifert, H. S. (2011) The
Spring, D. R. (2011) Quorum sensing in Gram-negative bacteria: small-
molecule modulation of AHL and AI-2 quorum sensing pathways. Chem.
Rev. 111, 28–67
DNA-binding activity of the Neisseria gonorrhoeae LexA orthologue
NG1427 is modulated by oxidation. Mol. Microbiol. 79, 846–860
31. Miller, J. H. (1972) Experiments in Molecular Genetics, Cold Spring Har-
bor Laboratory, Cold Spring Harbor, NY
13. Mattmann, M. E., and Blackwell, H. E. (2010) Small molecules that mod-
ulate quorum sensing and control virulence in Pseudomonas aeruginosa. J. 32. Zhang, X., and Bremer, H. (1995) Control of the Escherichia coli rrnB P1
Org. Chem. 75, 6737–6746
promoter strength by ppGpp. J. Biol. Chem. 270, 11181–11189
33. Zou, Y., and Nair, S. K. (2009) Molecular basis for the recognition of
structurally distinct autoinducer mimics by the Pseudomonas aeruginosa
LasR quorum-sensing signaling receptor. Chem. Biol. 16, 961–970
14. Moore, J. D., Rossi, F. M., Welsh, M. A., Nyffeler, K. E., and Blackwell, H. E.
(2015) A comparative analysis of synthetic quorum sensing modulators in
Pseudomonas aeruginosa: new insights into mechanism, active efflux sus-
ceptibility, phenotypic response, and next-generation ligand design. J. Am. 34. Amara, N., Mashiach, R., Amar, D., Krief, P., Spieser, S. A., Bottomley,
Chem. Soc. 137, 14626–14639
M. J., Aharoni, A., and Meijler, M. M. (2009) Covalent inhibition of bac-
terial quorum sensing. J. Am. Chem. Soc. 131, 10610–10619
15. Deng, X., Weerapana, E., Ulanovskaya, O., Sun, F., Liang, H., Ji, Q., Ye, Y.,
Fu, Y., Zhou, L., Li, J., Zhang, H., Wang, C., Alvarez, S., Hicks, L. M., Lan, 35. O’Brien, K. T., Noto, J. G., Nichols-O’Neill, L., and Perez, L. J. (2015)
L., Wu, M., Cravatt, B. F., and He, C. (2013) Proteome-wide quantification
and characterization of oxidation-sensitive cysteines in pathogenic bacte-
ria. Cell Host Microbe 13, 358–370
Potent irreversible inhibitors of LasR quorum sensing in Pseudomonas
aeruginosa. ACS Med. Chem. Lett. 6, 162–167
36. Passador, L., Tucker, K. D., Guertin, K. R., Journet, M. P., Kende, A. S., and
Iglewski, B. H. (1996) Functional analysis of the Pseudomonas aeruginosa
autoinducer PAI. J. Bacteriol. 178, 5995–6000
16. Chen, P. R., Brugarolas, P., and He, C. (2011) Redox signaling in human
pathogens. Antioxid. Redox Signal. 14, 1107–1118
17. Zheng, M., Aslund, F., and Storz, G. (1998) Activation of the OxyR tran-
scription factor by reversible disulfide bond formation. Science 279,
1718–1721
37. Gerdt, J. P., McInnis, C. E., Schell, T. L., and Blackwell, H. E. (2015) Un-
raveling the contributions of hydrogen-bonding interactions to the activ-
ity of native and non-native ligands in the quorum-sensing receptor LasR.
Org. Biomol. Chem. 13, 1453–1462
18. Drazic, A., Tsoutsoulopoulos, A., Peschek, J., Gundlach, J., Krause, M.,
Bach, N. C., Gebendorfer, K. M., and Winter, J. (2013) Role of cysteines in
the stability and DNA-binding activity of the hypochlorite-specific tran-
scription factor HypT. PLoS ONE 8, e75683
38. Gerdt, J. P., McInnis, C. E., Schell, T. L., Rossi, F. M., and Blackwell, H. E.
(2014) Mutational analysis of the quorum-sensing receptor LasR reveals
interactions that govern activation and inhibition by nonlactone ligands.
Chem. Biol. 21, 1361–1369
19. Sun, F., Liang, H., Kong, X., Xie, S., Cho, H., Deng, X., Ji, Q., Zhang, H.,
Alvarez, S., Hicks, L. M., Bae, T., Luo, C., Jiang, H., and He, C. (2012)
Quorum-sensing agr mediates bacterial oxidation response via an intra-
molecular disulfide redox switch in the response regulator AgrA. Proc.
Natl. Acad. Sci. U.S.A. 109, 9095–9100
39. Schuster, M., Urbanowski, M. L., and Greenberg, E. P. (2004) Promoter
specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA
binding of purified LasR. Proc. Natl. Acad. Sci. U.S.A. 101, 15833–15839
40. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J.
(2015) The Phyre2 web portal for protein modeling, prediction and anal-
ysis. Nat. Protoc. 10, 845–858
20. Kim, T., Duong, T., Wu, C. A., Choi, J., Lan, N., Kang, S. W., Lokanath,
N. K., Shin, D., Hwang, H. Y., and Kim, K. K. (2014) Structural insights into
the molecular mechanism of Escherichia coli SdiA, a quorum-sensing re- 41. Vannini, A., Volpari, C., Gargioli, C., Muraglia, E., Cortese, R., De Fran-
ceptor. Acta Crystallogr. Sect. D Biol. Crystallogr. 70, 694–707
21. Pearson, J. P., Gray, K. M., Passador, L., Tucker, K. D., Eberhard, A.,
Iglewski, B. H., and Greenberg, E. P. (1994) Structure of the autoinducer
cesco, R., Neddermann, P., and Marco, S. D. (2002) The crystal structure
of the quorum sensing protein TraR bound to its autoinducer and target
DNA. EMBO J. 21, 4393–4401
required for expression of Pseudomonas aeruginosa virulence genes. Proc. 42. Hudaiberdiev, S., Choudhary, K. S., Vera Alvarez, R., Gelencsér, Z., Ligeti,
Natl. Acad. Sci. U.S.A. 91, 197–201
B., Lamba, D., and Pongor, S. (2015) Census of solo LuxR genes in pro-
karyotic genomes. Front. Cell. Infect. Microbiol. 5, 20
22. Bottomley, M. J., Muraglia, E., Bazzo, R., and Carfì, A. (2007) Molecular
insights into quorum sensing in the human pathogen Pseudomonas 43. Schaefer, K. N., Geil, W. M., Sweredoski, M. J., Moradian, A., Hess, S., and
aeruginosa from the structure of the virulence regulator LasR bound to its
autoinducer. J. Biol. Chem. 282, 13592–13600
Barton, J. K. (2015) Oxidation of p53 through DNA charge transport in-
volves a network of disulfides within the DNA-binding domain. Biochem-
istry 54, 932–941
23. Chhabra, S. R., Stead, P., Bainton, N. J., Salmond, G. P., Stewart, G. S.,
Williams, P., and Bycroft, B. W. (1993) Autoregulation of carbapenem 44. Schuster, M., and Greenberg, E. P. (2006) A network of networks: quo-
biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl)-L-
homoserine lactone. J. Antibiot. 46, 441–454
rum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Mi-
crobiol. 296, 73–81
24. Geske, G. D., Wezeman, R. J., Siegel, A. P., and Blackwell, H. E. (2005)
Small molecule inhibitors of bacterial quorum sensing and biofilm forma-
tion. J. Am. Chem. Soc. 127, 12762–12763
45. Hassett, D. J., Ma, J.-F., Elkins, J. G., McDermott, T. R., Ochsner, U. A.,
West, S. E., Huang, C.-T., Fredericks, J., Burnett, S., Stewart, P. S.,
McFeters, G., Passador, L., and Iglewski, B. H. (1999) Quorum sensing in
Pseudomonas aeruginosa controls expression of catalase and superoxide
dismutase genes and mediates biofilm susceptibility to hydrogen peroxide.
Mol. Microbiol. 34, 1082–1093
25. Castellanos-Serra, L., and Hardy, E. (2006) Negative detection of biomol-
ecules separated in polyacrylamide electrophoresis gels. Nat. Protoc. 1,
1544–1551
26. Riddles, P. W., Blakeley, R. L., and Zerner, B. (1979) Ellman’s reagent: 46. Davenport, P. W., Griffin, J. L., and Welch, M. (2015) Quorum sensing is
MAY 27, 2016•VOLUME 291•NUMBER 22
JOURNAL OF BIOLOGICAL CHEMISTRY 11785