ChemComm
Communication
one-pot reactions. Via this method, ABC-, CBABCD-, and
DCBABCDE-sequenced copolymers were easily obtained by
sequentially adding ABC monomers, ABCD monomers, and
ABCDE monomers.
Financial support from National Natural Science Foundation
of China (51033005, 20974103, 21074121 and 21090354) and
the Program for New Century Excellent Talents in Universities
(NCET-11-0882) is gratefully acknowledged.
Notes and references
1 K. Kirshenbaum, A. E. Barron, R. A. Goldsmith, P. Armand,
E. Bradley, K. T. V. Truong, K. A. Dill, F. E. Cohen and
R. N. Zuckermann, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 4303.
2 G. Odian, Principles of Polymerization, John Wily and Sons, Inc.,
Hoboken, NJ, 4th edn, 2004.
3 N. Badi and J. F. Lutz, Chem. Soc. Rev., 2009, 38, 3383.
4 K. Satoh, S. Ozawa, M. Mizutani, K. Nagai and M. Kamigaito, Nat.
Commun., 2010, 1, 6.
5 S. Beck, D. Geraghty, H. Inoko, L. Rowen, B. Aguado, S. Bahram,
R. D. Campbell, S. A. Forbes, T. Guillaudeux, L. Hood, R. Horton,
M. Janer, C. Jasoni, A. Madan, S. Milne, M. Neville, A. Oka, S. Qin,
G. Ribas-Despuig, J. Rogers, T. Shiina, T. Spies, G. Tamiya,
H. Tashiro, J. Trowsdale, Q. Vu, L. Williams, M. Yamazaki and
M. S. Consortium, Nature, 1999, 401, 921.
Scheme 3 (a) Schematic outline of one-pot synthesis of
a DCBABCDE-
sequenced copolymer via sequential addition of A, B, C, D, and E monomers
and (b) detailed reactions for preparing a DCBABCDE-sequenced copolymer.
6 M. Ouchi, N. Badi, J. F. Lutz and M. Sawamoto, Nat. Chem., 2011,
3, 917.
7 M. Zamfir and J. F. Lutz, Nat. Commun., 2012, 3, 1138.
8 B. V. K. J. Schmidt, N. Fechler, J. Falkenhagen and J. F. Lutz, Nat.
Chem., 2011, 3, 234.
9 R. E. Kleiner, Y. Brudno, M. E. Birnbaum and D. R. Liu, J. Am. Chem.
Soc., 2008, 130, 4646.
(next to the vinyl unit), shifted to 1.2 ppm in the 1HNMR
spectrum (as shown in Fig. S13, ESI†). The 13C NMR results
also verified quantitative reaction of 2-dimethacrylate with
2-aminoethanethiol, shown by the vinyl carbon signals (1 and
10 C. M. Thomas, Chem. Soc. Rev., 2010, 39, 165.
2) at 126 and 137 ppm shifting completely to 40 and 34 ppm, 11 J. W. Kramer, D. S. Treitler, E. W. Dunn, P. M. Castro, T. Roisnel,
C. M. Thomas and G. W. Coates, J. Am. Chem. Soc., 2009, 131, 16042.
respectively (Fig. S13, ESI†). N-acetylhomocysteine thiolactone
12 S. Ida, T. Terashima, M. Ouchi and M. Sawamoto, J. Am. Chem. Soc.,
(C unit) was added to the mixture, and amine ring-opening of
2009, 131, 10808.
the thiolactone gave a CBABC sequence with a thiol at each end 13 K. Nakatani, Y. Ogura, Y. Koda, T. Terashima and M. Sawamoto,
J. Am. Chem. Soc., 2012, 134, 4373.
14 K. Satoh, M. Matsuda, K. Nagai and M. Kamigaito, J. Am. Chem. Soc.,
(as shown in Scheme 3). This was verified by the NMR spec-
trum, in which the signal (methene protons of thiolactone) at
2010, 132, 10003.
2.1 ppm shifted completely to 1.85 ppm (see Fig. S14, ESI†), and 15 Z. L. Li, L. Li, X. X. Deng, L. J. Zhang, B. T. Dong, F. S. Du and
Z. C. Li, Macromolecules, 2012, 45, 4590.
16 B. D. Mather, K. Viswanathan, K. M. Miller and T. E. Long, Prog.
complete transformation of the lactone unit (8, 207 ppm) to an
amide (80, 173 ppm) occurred (see Fig. S14, ESI†), after complete
Polym. Sci., 2006, 31, 487.
ring-opening of the thiolactone. When a bromomaleimide (D unit) 17 (a) C. Y. Hong, Y. Z. You, D. C. Wu, Y. Liu and C. Y. Pan, J. Am. Chem.
Soc., 2007, 129, 5354; (b) A. Akinc, D. M. Lynn, D. G. Anderson and
R. Langer, J. Am. Chem. Soc., 2003, 125, 5316–5323.
18 X. P. Ma, J. B. Tang, Y. Q. Shen, M. H. Fan, H. D. Tang and
was added to the above CBABC sequence reaction mixture, the
bromomaleimide underwent rapid and highly efficient conjugation
with the thiols via a substitution reaction, yielding a DCBABCD
sequence with a thiomaleimide at each end. Based on the NMR
results, it is clear that thiomaleimides are present at both ends after
M. Radosz, J. Am. Chem. Soc., 2009, 131, 14795.
19 R. Benesch and R. E. Benesch, J. Am. Chem. Soc., 1956, 78, 1597.
20 P. Espeel, F. Goethals and F. E. Du Prez, J. Am. Chem. Soc., 2011,
133, 1678.
the substitution reaction (see Fig. S15, ESI†). Finally, a diamine was 21 L. M. Tedaldi, M. E. B. Smith, R. I. Nathani and J. R. Baker, Chem.
Commun., 2009, 6583.
22 M. E. B. Smith, F. F. Schumacher, C. P. Ryan, L. M. Tedaldi,
added, and the mixture underwent nucleophilic addition of amine
and thiomaleimide, yielding a DCBABCDE-sequenced copolymer
D. Papaioannou, G. Waksman, S. Caddick and J. R. Baker, J. Am.
with a Mn of 25600 and a PDI of 1.24. It is clear that the signals for
the double bond of the thiomaleimide were absent from the NMR
spectrum (Fig. S16, ESI†), indicating complete nucleophilic addition
Chem. Soc., 2010, 132, 1960.
23 M. W. Jones, R. A. Strickland, F. F. Schumacher, S. Caddick,
J. R. Baker, M. I. Gibson and D. M. Haddleton, J. Am. Chem. Soc.,
2012, 134, 1847.
of the thiomaleimide with the amine, and the formation of the 24 M. P. Robin, M. W. Jones, D. M. Haddleton and R. K. O’Reilly, ACS
Macro Lett., 2012, 1, 222.
25 M. P. Robin, P. Wilson, A. B. Mabire, J. K. Kiviaho, J. E. Raymond,
DCBABCDE-sequenced copolymer.
In this study, we have reported a novel method for preparing
D. M. Haddleton and R. K. O’Reilly, J. Am. Chem. Soc., 2013,
sequence-ordered copolymers via quantitative or highly selective
135, 2875.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 6057--6059 6059