Communication
RSC Advances
Notes and references
1
(a) D. Wang, H. Dong, We. Hu, Y. Liu and D. Zhu, Chem. Rev.,
012, 112, 2208–2267; (b) Y.-J. Cheng, S.-H. Yang and C.-S. Hsu,
2
Chem. Rev., 2009, 109, 5868–5923; (c) J. F. Mike and J.
L. Lutkenhaus, J. Polym. Sci., Part B: Polym. Phys., 2013, 51,
468–480; (d) A. Facchetti, Chem. Mater., 2011, 23, 733–758; (e) J.
E. Anthony, A. Facchetti, M. Heeney, S. R. Marder and X.
W. Zhan, Adv. Mater., 2010, 22, 3876–3892; (f) I. F. Perepichka, D.
F. Perepichka, H. Meng and F. Wudl, Adv. Mater., 2005, 17,
2
2
5
4
281–2305; (g) R. Mondal, S. Ko and Z. Bao, J. Mater. Chem.,
010, 20, 10568–10576; (h) J. E. Anthony, Chem. Rev., 2006, 106,
028–5048; (i) J. E. Anthony, Angew. Chem., Int. Ed., 2008, 47,
52–483; (j) Y. Liu, C.-a. Di, C. Du, Y. Liu, K. Lu, W. Qiu and
G. Yu, Chem.–Eur. J., 2010, 16, 2231–2239; (k) K. Takimiya,
S. Shinamura, I. Osaka and E. Miyazaki, Adv. Mater., 2011, 23,
Scheme 2 Reductions attempted to obtain fluorenes.
4
347–4370.
(a) P. Beimling and G. Kossmehl, Chem. Ber., 1986, 119,
198–3203; (b) J. G. Laquindanum, H. E. Katz and A.
2
tion, dithieno[3,2-b:6,7-b]fluorenone (14) was synthesized via the
3
CuI–TMEDA-catalyzed treatment of 10a with Na
2 2
S?9H O in DMF at
J. Lovinger, J. Am. Chem. Soc., 1998, 120, 664–672; (c)
B. Tylleman, C. M. L. VandeVelde, J.-Y. Balandier, S. Stas,
S. Sergeyev and Y. H. Geerts, Org. Lett., 2011, 13, 5208–5211; (d) J.
G. Laquindanum, H. E. Katz, A. J. Lovinger and A. Dodabalapur,
Adv. Mater., 1997, 9, 36–39; (e) K. Takimiya, Y. Kunugi, Y. Konda,
N. Niihara and T. Otsubo, J. Am. Chem. Soc., 2004, 126,
8
0 uC (66% isolated yield), using the method reported by Zhang’s
5b
group. Compound 14 could be converted to dithieno[3,2-b:6,7-
b]fluorene (11a) with Na S?9H O in refluxing NMP, albeit in quite
a low yield (13%) (Scheme 2).
2
2
All products were characterized using spectroscopic methods
such as NMR and mass spectrometry. The proton NMR signal for
the methylene of the fluorenyl compounds generally appears at
5084–5085; (f) T. Kashiki, E. Miyazaki and K. Takimiya, Chem.
Lett., 2008, 284–285; (g) Q. Meng, L. Jiang, Z. Wei, C. Wang,
H. Zhao, H. Li, W. Xu and W. Hu, J. Mater. Chem., 2010, 20,
13
4
.00–4.20 ppm, while C NMR signals for the methylene of the
fluorenes range from 34.50 ppm to 36.00 ppm. The structure of
1f was unambiguously confirmed using X-ray single crystal
structure analysis (Fig. 2, see the ESI ).
10931–10935; (h) H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu
and G. Xu, Chem. Mater., 2006, 18, 3237–3241; (i) H. Pan, Y. Wu,
Y. Li, P. Liu, B. S. Ong, S. Zhu and G. Xu, Adv. Funct. Mater., 2007,
1
3
17, 3574–3579; (j) H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu
In conclusion, we have described a novel and efficient route for
the preparation of dithieno[3,2-b:6,7-b]fluorenes via a metal
catalyst-free tandem annulation–reduction of suitable precursors
and G. Xu, J. Am. Chem. Soc., 2007, 129, 4112–4113; (k) M.
M. Payne, S. R. Parkin, J. E. Anthony, C. C. Kuo and T.
N. Jackson, J. Am. Chem. Soc., 2005, 127, 4986–4987; (l) K.
C. Dickey, J. E. Anthony and Y. L. Loo, Adv. Mater., 2006, 18,
2 2
with Na S?9H O in a single step, where the formation of the two
1
721–1726; (m) S. Subramanian, S. K. Park, S. R. Parkin,
V. Podzorov, T. N. Jackson and J. E. Anthony, J. Am. Chem. Soc.,
008, 130, 2706–2707; (n) M.-C. Chen, C. Kim, S.-Y. Chen, Y.-
thiophene rings and the reduction of the fluorenone occur
spontaneously during the reaction process. This result demon-
strates that sodium sulfide can act as a surrogate for the
annulation leading towards benzothiophene and a reductant for
fluorenones or diaryl ketones, with the adoption of high
temperature and a suitable solvent being key factors. The
utilization of this strategy for the formation of other thiophene-
fused carbocycles and heterocycles with extended p-conjugated
systems, the reduction of ketones or quinones with sodium
sulfide, and the application of the above described dithieno-fused
fluorenes as key precursors in the construction of thiophene-based
conjugated organic molecules and polymers suitable for solar cells
and/or organic field transistors, are ongoing in our laboratory.
2
J. Chiang, M.-C. Chung, A. Facchetti and T. J. Marks, J. Mater.
Chem., 2008, 18, 1029–1036; (o) Y. Liang, Y. Wu, D. Feng, S.-
T. Tsai, H.-J. Son, G. Li and L. Yu, J. Am. Chem. Soc., 2009, 131,
56–57; (p) Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray and
L. Yu, J. Am. Chem. Soc., 2009, 131, 7792–7799; (q) L. Huo, J. Hou,
S. Zhang, H. Y. Chen and Y. Yang, Angew. Chem., Int. Ed., 2010,
49, 1500–1503; (r) Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li,
C. Ray and L. Yu, Adv. Mater., 2010, 22, E135–E138; (s) C. Piliego,
T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge and J.
M. J. Frechet, J. Am. Chem. Soc., 2010, 132, 7595–7597; (t)
Y. Zhang, S. K. Hau, H.-L. Yip, Y. Sun, O. Acton and A. K. Y. Jen,
Chem. Mater., 2010, 22, 2696–2698; (u) Y. Zou, A. Najari,
P. Berrouard, S. Beaupre, B. Reda Aich, Y. Tao and M. Leclerc,
J. Am. Chem. Soc., 2010, 132, 5330–5331; (v) P.-L. T. Boudreault,
A. Najari and M. Leclerc, Chem. Mater., 2011, 23, 456–469; (w) M.
T. Lloyd, A. C. Mayer, S. Subramanian, D. A. Mourey, D.
J. Herman, A. V. Bapat, J. E. Anthony and G. G. Malliaras, J. Am.
Chem. Soc., 2007, 129, 9144–9149; (x) Z. Li, Y.-F. Lim, J. B. Kim, S.
R. Parkin, Y.-L. Loo, G. G. Malliaras and J. E. Anthony, Chem.
Commun., 2011, 47, 7617–7619.
3
(a) S. Shinamura, E. Miyazaki and K. Takimiya, J. Org. Chem.,
2010, 75, 1228–1234; (b) S. Loser, C. J. Bruns, H. Miyauchi, R.
Fig. 2 The crystal structure of 11f.
1
7710 | RSC Adv., 2013, 3, 17707–17711
This journal is ß The Royal Society of Chemistry 2013