Chemistry - A European Journal
10.1002/chem.201805441
COMMUNICATION
375; j) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed.
2013, 52, 11726-11743; k) D. A. Colby, A. S. Tsai, R. G.
Bergman, J. A. Ellmen, Acc. Chem. Res. 2012, 45, 814-
825; l) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110,
1147-1169; m) L. Ackermann, R. Vicente, A. R. Kapdi,
Angew. Chem. Int. Ed. 2009, 48, 9792-9826; n) H. M.
Davies, J. R. Manning, Nature 2008, 451, 417-424; and
cited references.
[
2]
Representative reviews on electrosynthesis: a) S. R.
Waldvogel, S. Lips, M. Selt, B. Riehl, C. J. Kampf, Chem.
Rev. 2018, 118, 6706-6765; b) S. Tang, Y. Liu, A. Lei,
Chem 2018, 4, 27-45; c) G. S. Sauer, S. Lin, ACS Catal.
2
2
018, 8, 5175-5187; d) J. Parry, N. Fu, S. Lin, Synlett
018, 29, 257-265; e) S. Mohle, M. Zirbes, E. Rodrigo, T.
Gieshoff, A. Wiebe, S. R. Waldvogel, Angew. Chem. Int.
Ed. 2018, 57, 6018-6041; f) M. Yan, Y. Kawamata, P. S.
Baran, Chem. Rev. 2017, 117, 13230-13319; g) Z.-W. Hou,
Z.-Y. Mao, H.-C. Xu, Synlett 2017, 28, 1867-1872; h) R.
Feng, J. A. Smith, K. D. Moeller, Acc. Chem. Res. 2017,
5
0, 2346-2352; i) E. J. Horn, B. R. Rosen, P. S. Baran,
ACS Cent. Sci. 2016, 2, 302-308; j) A. Jutand, Chem. Rev.
008, 108, 2300-2347; k) J.-i. Yoshida, K. Kataoka, R.
2
Horcajada, A. Nagaki, Chem. Rev. 2008, 108, 2265-2299.
For illustrative examples of innate reactivity, see: a) S.
Lips, D. Schollmeyer, R. Franke, S. R. Waldvogel, Angew.
Chem. Int. Ed. 2018, DOI: 10.1002/anie.201808555; b) Y.
Qiu, J. Struwe, T. H. Meyer, J. C. A. Oliveira, L.
Ackermann, Chem. Eur. J. 2018, 24, 12784-12789; c) Y.
Imada, J. L. Rockl, A. Wiebe, T. Gieshoff, D. Schollmeyer,
K. Chiba, R. Franke, S. R. Waldvogel, Angew. Chem. Int.
Ed. 2018, 57,12316-12140; d) P. Xiong, H.-H. Xu, H.-C.
Xu, J. Am. Chem. Soc. 2017, 139, 2956-2959; e) A. Wiebe,
S. Lips, D. Schollmeyer, R. Franke, S. R. Waldvogel,
Angew. Chem. Int. Ed. 2017, 56, 14727-14731; f) L.
Schulz, M. Enders, B. Elsler, D. Schollmeyer, K. M.
Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem. Int.
Ed. 2017, 56, 4877-4881; g) Y. Kawamata, M. Yan, Z. Liu,
D.-H. Bao, J. Chen, J. T. Starr, P. S. Baran, J. Am. Chem.
Soc. 2017, 139, 7448-7451; h) T. Gieshoff, A. Kehl, D.
Schollmeyer, K. D. Moeller, S. R. Waldvogel, J. Am. Chem.
Soc. 2017, 139, 12317-12324; i) E. J. Horn, B. R. Rosen,
Y. Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran,
Nature 2016, 533, 77-81; j) A. G. O'Brien, A. Maruyama, Y.
Inokuma, M. Fujita, P. S. Baran, D. G. Blackmond, Angew.
Chem. Int. Ed. 2014, 53, 11868-11871, and cited
references.
Scheme 5. Plausible catalytic cycle.
[3]
In conclusion, we have reported on the first nickel-catalyzed
electrooxidative C−H amination. The carboxylate-enabled nickel-
electrocatalysis occurred with broad substrate scope and high
levels of chemo- and position-selectivity. In contrast to all
previous metal-catalyzed electrochemical C−H activations, the
nickel electro-regime proved particularly potent in the C−H
nitrogenation of electron-deficient arenes. Detailed mechanistic
studies provided strong support for a fast C−H nickelation and
an oxidation-induced reductive elimination at nickel(IV).
Acknowledgements
Generous support by the CSC (fellowship to SKZ), the DFG
(
Gottfried-Wilhelm-Leibniz award to LA), and the Alexander-von-
Humboldt foundation (fellowship to RCS) is gratefully
acknowledged.
[
[
4]
5]
For recent reviews, see: a) N. Sauermann, T. H. Meyer, Y.
Qiu, L. Ackermann, ACS Catal. 2018, 8, 7086-7103; b) N.
Sauermann, T. H. Meyer, L. Ackermann, Chem. Eur. J.
2018, DOI: 10.1002/chem.201802706; c) C. Ma, P. Fang,
T.-S. Mei, ACS Catal. 2018, 8, 7179-7189; d) M. D.
Karkas, Chem. Soc. Rev. 2018, 47, 5786-5865; e) K.-J.
Jiao, C.-Q. Zhao, P. Fang, T.-S. Mei, Tetrahedron Lett.
Conflict of interest
2017, 58, 797-802.
The authors declare no conflict of interest.
a) A. Shrestha, M. Lee, A. L. Dunn, M. S. Sanford, Org.
Lett. 2018, 20, 204-207; b) Q.-L. Yang, Y.-Q. Li, C. Ma, P.
Fang, X.-J. Zhang, T.-S. Mei, J. Am. Chem. Soc. 2017,
Keywords: Electrochemistry • C−H activation • Mechanism •
Nickel catalysis • Selectivity • Nickel(IV)
1
39, 3293-3298; c) C. Ma, C.-Q. Zhao, Y.-Q. Li, L.-P.
Zhang, X.-T. Xu, K. Zhang, T.-S. Mei, Chem. Commun.
017, 53, 12189-12192; d) Y.-Q. Li, Q.-L. Yang, P. Fang,
2
T.-S. Mei, D. Zhang, Org. Lett. 2017, 19, 2905-2908; e) M.
Konishi, K. Tsuchida, K. Sano, T. Kochi, F. Kakiuchi, J.
Org. Chem. 2017, 82, 8716-8724; f) Y. B. Dudkina, T. V.
Gryaznova, O. G. Sinyashin, Y. H. Budnikova, Russ.
Chem. Bull. 2015, 64, 1713-1725; g) F. Saito, H. Aiso, T.
Kochi, F. Kakiuchi, Organometallics 2014, 33, 6704-6707;
h) H. Aiso, T. Kochi, H. Mutsutani, T. Tanabe, S.
Nishiyama, F. Kakiuchi, J. Org. Chem. 2012, 77, 7718-
[
1]
a) J. C. K. Chu, T. Rovis, Angew. Chem. Int. Ed. 2018, 57,
62-101; b) P. Gandeepan, L. Ackermann, Chem 2018, 4,
199-222; c) Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017,
117, 9247-9301; d) W. Ma, P. Gandeepan, J. Li, L.
Ackermann, Org. Chem. Front. 2017, 4, 1435-1467; e) J.
He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem.
Rev. 2017, 117, 8754-8786; f) Q.-Z. Zheng, N. Jiao, Chem.
Soc. Rev. 2016, 45, 4590-4627; g) B. Ye, N. Cramer, Acc.
Chem. Res. 2015, 48, 1308-1318; h) O. Daugulis, J.
Roane, L. D. Tran, Acc. Chem. Res. 2015, 48, 1053-1064;
i) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369-
7724; i) F. Kakiuchi, T. Kochi, H. Mutsutani, N. Kobayashi,
S. Urano, M. Sato, S. Nishiyama, T. Tanabe, J. Am. Chem.
Soc. 2009, 131, 11310-11311; j) C. Amatore, C.
This article is protected by copyright. All rights reserved.