Journal of the American Chemical Society
Article
(y) Lim, C.-H.; Ryan, M. D.; McCarthy, B. G.; Theriot, J. C.; Sartor, S.
M.; Damrauer, N. H.; Musgrave, C. B.; Miyake, G. M. J. Am. Chem. Soc.
2017, 139, 348.
(17) Zivic, N.; Bouzrati-Zerelli, M.; Kermagoret, A.; Dumur, F.;
Fouassier, J.-P.; Gigmes, D.; Lalevee, J. ChemCatChem 2016, 8, 1617.
́
(18) Jockusch, S.; Yagci, Y. Polym. Chem. 2016, 7, 6039.
(19) (a) Aoshima, H.; Uchiyama, M.; Satoh, K.; Kamigaito, M. Angew.
Chem., Int. Ed. 2014, 53, 10932. (b) Uchiyama, M.; Satoh, K.; Kamigaito,
M. Angew. Chem., Int. Ed. 2015, 54, 1924.
(20) All solvents were dried through activated alumina columns or
distillation, and degassed before use; see SI for more details.
(21) Deffieux, A.; Young, J. A.; Hsieh, W. C.; Squire, D. R.; Stannett, V.
Polymer 1983, 24, 573.
(22) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.;
Springer: New York, 2006.
(23) Uncontrolled cationic polymerizations of vinyl ethers via anodic
oxidation have been reported. See: (a) Mengoli, G.; Vidotto, G.
Makromol. Chem. 1970, 139, 293. (b) Breitenbach, J. W.; Sommer, F.;
Unger, G. Monatsh. Chem. 1976, 107, 359. (c) Nuyken, O.; Braun, H.;
Crivello, J. In Handbook of Polymer Synthesis, 2nd ed.; Kricheldorf, H. R.,
Nuyken, O., Swift, G., Eds.; Marcel Dekker: New York, 2004.
(3) For selected examples, see: (a) Yamago, S.; Ukai, Y.; Matsumoto,
A.; Nakamura, Y. J. Am. Chem. Soc. 2009, 131, 2100. (b) Nakamura, Y.;
Arima, T.; Tomita, S.; Yamago, S. J. Am. Chem. Soc. 2012, 134, 5536.
(4) For selected examples, see: (a) Xu, J.; Jung, K.; Atme, A.;
Shanmugam, S.; Boyer, C. J. Am. Chem. Soc. 2014, 136, 5508. (b) Chen,
M.; MacLeod, M. J.; Johnson, J. A. ACS Macro Lett. 2015, 4, 566.
(c) Shanmugam, S.; Xu, J.; Boyer, C. J. Am. Chem. Soc. 2015, 137, 9174.
(d) Xu, J.; Shanmugam, S.; Duong, H. T.; Boyer, C. Polym. Chem. 2015,
6, 5615. (e) Shanmugam, S.; Xu, J.; Boyer, C. Chem. Sci. 2015, 6, 1341.
(f) Shanmugam, S.; Boyer, C. J. Am. Chem. Soc. 2015, 137, 9988.
(g) Shanmugam, S.; Xu, J.; Boyer, C. Angew. Chem., Int. Ed. 2016, 55,
1036. (h) Xu, J.; Shanmugam, S.; Fu, C.; Aguey-Zinsou, K.; Boyer, C. J.
Am. Chem. Soc. 2016, 138, 3094. (i) Shanmugam, S.; Xu, J.; Boyer, C.
Polym. Chem. 2016, 7, 6437. (j) Fu, C.; Xu, J.; Boyer, C. Chem. Commun.
2016, 52, 7126. (k) Yeow, J.; Shanmugam, S.; Corrigan, N.; Kuchel, R.
P.; Xu, J.; Boyer, C. Macromolecules 2016, 49, 7277. (l) Corrigan, N.; Xu,
J.; Boyer, C. Macromolecules 2016, 49, 3274. (m) Tucker, B. S.;
Coughlin, M. L.; Figg, C. A.; Sumerlin, B. S. ACS Macro Lett. 2017, 6,
452. (n) Chen, M.; Deng, S.; Gu, Y.; Lin, J.; MacLeod, M. J.; Johnson, J.
A. J. Am. Chem. Soc. 2017, 139, 2257. (o) Lee, I.-H.; Discekici, E. H.;
Anastasaki, A.; Read de Alaniz, J.; Hawker, C. J. Polym. Chem. 2017, 8,
3351. Ng, G.; Yeow, J.; Xu, J.; Boyer, C. Polym. Chem. 2017, 8, 2841.
(5) (a) Poelma, J. E.; Fors, B. P.; Meyers, G. F.; Kramer, J. W.; Hawker,
C. J. Angew. Chem., Int. Ed. 2013, 52, 6844. (b) Vorobii, M.; de los Santos
Pereira, A.; Pop-Georgievski, O.; Kostina, N. Y.; Rodriguez-
Emmenegger, C.; Percec, V. Polym. Chem. 2015, 6, 4210. (c) Pester,
C. W.; Poelma, J. E.; Narupai, B.; Patel, S. N.; Su, G. M.; Mates, T. E.;
Luo, Y.; Ober, C. K.; Hawker, C. J.; Kramer, E. J. J. Polym. Sci., Part A:
Polym. Chem. 2016, 54, 253. (d) Discekici, E. H.; Pester, C. W.; Treat, N.
J.; Lawrence, J.; Mattson, K. M.; Narupai, B.; Toumayan, E. P.; Luo, Y.;
McGrath, A. J.; Clark, P. G.; Read de Alaniz, J.; Hawker, C. J. ACS Macro
Lett. 2016, 5, 258. (e) Yan, J.; Pan, X.; Schmitt, M.; Wang, Z.;
Bockstaller, M. R.; Matyjaszewski, K. ACS Macro Lett. 2016, 5, 661.
(f) Pester, C. W.; Narupai, B.; Mattson, K. M.; Bothman, D. P.; Klinger,
D.; Lee, K. W.; Discekici, E. H.; Hawker, C. J. Adv. Mater. 2016, 28, 9292.
(g) Narupai, B.; Poelma, J. E.; Pester, C. W.; McGrath, A. J.; Toumayan,
E. P.; Luo, Y.; Kramer, J. W.; Clark, P. G.; Ray, P. C.; Hawker, C. J. J.
Polym. Sci., Part A: Polym. Chem. 2016, 54, 2276. (h) Yang, Y.; Liu, X.;
Ye, G.; Zhu, S.; Wang, Z.; Huo, X.; Matyjaszewski, K.; Lu, Y.; Chen, J.
ACS Appl. Mater. Interfaces 2017, 9, 13637. (i) Page, Z. A.; Narupai, B.;
Pester, C. W.; Zerdan, R. B.; Sokolov, A.; Laitar, D. S.; Mukhopadhyay,
S.; Sprague, S.; McGrath, A. J.; Kramer, J. W.; Trefonas, P.; Hawker, C. J.
ACS Cent. Sci. 2017, 3, 654.
́
(24) El-Roz, M.; Lalevee, J.; Morlet-Savary, F.; Allonas, X.; Fouassier, J.
P. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 7369.
(25) (a) Degani, I.; Lunazzi, L.; Pedulli, G. F. Mol. Phys. 1968, 14, 217.
(b) Niizuma, S.; Sato, N.; Kawata, H.; Suzuki, Y.; Toda, T.; Kokubun, H.
Bull. Chem. Soc. Jpn. 1985, 58, 2600.
(26) Kawata, H.; Niizuma, S. Bull. Chem. Soc. Jpn. 1989, 62, 2279.
(27) Neither decreasing the concentration of 3a (ESR signal became
too weak to be resolved) nor increasing the temperature in the ESR
cavity (the radical became unstable above 303 K) overcame the
broadening issue.
(28) (a) Currin, J. D. Phys. Rev. 1962, 126, 1995. (b) Bales, B. L.; Peric,
M.; Dragutan, I. J. Phys. Chem. A 2003, 107, 9086.
(29) Poole, C. P.; Farach, H. A. Bull. Magn. Reson. 1979, 1, 162.
(30) Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703.
(31) Two independent, overlapping spin systems could also explain the
spectra of Figure 11.
(32) Sugihara, S.; Kawamoto, Y.; Maeda, Y. Macromolecules 2016, 49,
1563.
(33) Kottisch, V.; Michaudel, Q.; Fors, B. P. J. Am. Chem. Soc. 2017,
139, 10665.
(34) (a) Liang, F.; Tan, J.; Piao, C.; Liu, Q. Synthesis 2008, 2008, 3579.
(b) Kapanda, C. N.; Muccioli, G. G.; Labar, G.; Poupaert, J. H.; Lambert,
D. M. J. Med. Chem. 2009, 52, 7310.
(35) (a) Schubart, R. Dithiocarbamic Acid and Derivatives. In
Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim,
2002. (b) Otsu, T. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2121.
(36) Uchiyama, M.; Satoh, K.; Kamigaito, M. Macromolecules 2015, 48,
5533.
(37) Sugihara, S.; Konegawa, N.; Maeda, Y. Macromolecules 2015, 48,
5120.
(38) (a) Demas, J. N.; Bowman, W. D.; Zalewski, E. F.; Velapoldi, R. A.
J. J. Phys. Chem. 1981, 85, 2766. (b) Kuhn, H. J.; Braslavsky, S. E.;
Schmidt, R. Pure Appl. Chem. 2004, 76, 2105.
(6) (a) Xu, J.; Fu, C.; Shanmugam, S.; Hawker, C. J.; Moad, G.; Boyer,
C. Angew. Chem. 2017, 129, 8496. (b) Xu, J.; Shanmugam, S.; Fu, C.;
Aguey-Zinsou, K.; Boyer, C. J. Am. Chem. Soc. 2016, 138, 3094. (c) Fu,
C.; Huang, Z.; Hawker, C. J.; Moad, G.; Xu, J.; Boyer, C. Polym. Chem.
2017, 8, 4637.
(7) Kottisch, V.; Michaudel, Q.; Fors, B. P. J. Am. Chem. Soc. 2016, 138,
15535.
(8) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(9) Pascual, L. M. M.; Dunford, D. G.; Goetz, A. E.; Ogawa, K. A.;
Boydston, A. J. Synlett 2016, 27, 759.
(39) Decker, C.; Moussa, K. J. Polym. Sci., Part A: Polym. Chem. 1990,
28, 3429.
(40) Nichols, P. J.; Grant, M. W. Aust. J. Chem. 1982, 35, 2455.
(41) E1/2 = −0.91 V vs SCE; see: Montalti, M.; Credi, A.; Prodi, L.;
Gandolfi, M. T. Handbook of Photochemistry, 3rd ed.; CRC Press: 2006.
(10) Martiny, M.; Steckhan, E.; Esch, T. Chem. Ber. 1993, 126, 1671.
(11) Miranda, M. A.; Izquierdo, M. A.; Galindo, F. J. Org. Chem. 2002,
67, 4138.
(12) Romero, N. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2014, 136,
17024.
(13) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013,
113, 5322.
́
(14) Kajouj, S.; Marcelis, L.; Lemaur, V.; Beljonne, D.; Moucheron, C.
Dalton Trans. 2017, 46, 6623.
(15) Ross, H. B.; Boldaji, M. D.; Rillema, P.; Blanton, C. B.; White, R. P.
Inorg. Chem. 1989, 28, 1013.
(16) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.,
Jr.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
I
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX