5250
A. Debache et al. / Tetrahedron Letters 50 (2009) 5248–5250
3. Bocker, R. H.; Guengerich, E. P. J. Med. Chem. 1986, 29, 1596.
4. Gordeev, M. F.; Patel, D. V.; Gordon, E. M. J. Org. Chem. 1996, 61, 924.
5. (a) Buhler, F. R.; Kiowski, W. J. Hypertens. 1987, 5, S3; (b) Reid, J. L.; Meredith, P.
A.; Pasanisi, F. J. Cardiovasc. Pharmacol. 1985, 7, S18.
6. Sunkel, C. E.; Fau de Casa-Juana, M. F.; Santos, L.; Garcia, A. G.; Artalijero, C. R.;
Villarroya, M.; Gonzalez-Morales, M. A.; Lopez, M. G.; Cillero, J.; Alonso, S.;
Priego, J. G. J. Med. Chem. 1992, 35, 2407.
7. Vo, D.; Matowe, W. C.; Ramesh, M.; Iqbal, N.; Wolowyk, M. W.; Howlett, S. E.;
Knaus, E. E. J. Med. Chem. 1995, 38, 2851.
8. Flaim, S. F.; Zelis, R. Fed. Proc. 1981, 40, 2877.
9. Godfraind, T.; Salomone, S. J. Cardiovasc. Pharmacol. 1997, 30, S1.
10. Van Zwieten, P. A. Blood Press. 1998, 1, 5.
11. Nayler, W. G. J. Clin. Basic Cardiol. 1999, 2, 155.
12. (a) Saushins, A.; Duburs, G. Heterocycles 1988, 27, 269; (b) Mager, P. P.; Coburn,
R. A.; Solo, A. J.; Triggle, D. J.; Rothe, H. Drug Des. Discovery 1992, 8, 273.
13. Manhold, R.; Jablonka, B.; Voigdt, W.; Schoenfinger, K. F.; Schravan, K. Eur. J.
Med. Chem. 1992, 27, 229.
14. (a) Klusa, V. Drugs Future 1995, 20, 135; (b) Bretzel, R. G.; Bollen, C. C.; Maeser,
E.; Federlin, K. F. Am. J. Kidney Dis. 1993, 21, 53; (c) Boer, R.; Gekker, V. Drugs
Future 1995, 20, 499; (d) Bretzel, R. G.; Bollen, C. C.; Maeser, E.; Federlin, K. F.
Am. J. Kidney Dis. 1992, 17, 465.
15. Sridhar, R.; Perumal, P. T. Tetrahedron 2005, 61, 2465.
16. Heravi, M. M.; Behbahani, F. K.; Oskooie, H. A.; Shoar, R. H. Tetrahedron Lett.
2005, 46, 2775.
Figure 2. ORTEP of 4 h.39
17. Moseley, J. D. Tetrahedron Lett. 2005, 46, 3179.
18. Tewari, N.; Dwivedi, N.; Tripathi, R. P. Tetrahedron Lett. 2004, 45, 9011.
19. Hantzsch, A. Liebigs Ann. Chem. 1882, 215, 1.
20. (a) Loev, B.; Snader, K. M. J. Org. Chem. 1965, 30, 1914; (b) Alajarin, R.; Vaquero,
J. J.; Garcia, J. L. N.; Alvarez-Builla, J. Synlett 1992, 297.
21. Sausins, A.; Duburs, G. Heterocycles 1988, 27, 269.
22. Evdokimor, N. M.; Magedov, I. V.; Kireev, A. S.; Kornienko, A. Org. Lett. 2006, 8,
899.
23. (a) Khadikar, B. M.; Gaikar, V. G.; Chitnavis, A. A. Tetrahedron Lett. 1995, 36,
8083; (b) Ohberg, L.; Westman, J. Synlett 2001, 1296; (c) Agarwal, A.; Chauhan,
P. M. S. Tetrahedron Lett. 2005, 46, 1345.
24. (a) Ji, S.-J.; Jiang, Z.-Q.; Lu, J.; Loh, T.-P. Synlett 2004, 831.
25. (a) Phillips, A. P. J. Am. Chem. Soc. 1949, 71, 4003; (b) Anderson, G. J. R.;
Berkelhammer, G. J. Am. Chem. Soc. 1958, 80, 992; (c) Singh, H.; Chimni, D. S. S.;
Kumar, S. Tetrahedron 1995, 51, 12775; (d) Breitenbucher, J. G.; Figliozzi, G.
Tetrahedron Lett. 2000, 41, 4311; (e) Liang, J.-C.; Yeh, J.-L.; Wang, C.-S.; Liou, S.-
F.; Tasi, C.-H.; Chen, I.-J. Bioorg. Med. Chem. 2002, 10, 719; (f) Miri, R.; Niknahad,
H.; Vesal, G.; Shafiee, A. IL Farmaco 2002, 57, 123; (g) Dondoni, A.; Massi, A.;
Minghini, E.; Sabbatini, S.; Bertoasi, V. J. Org. Chem. 2003, 68, 6172; (h)
Dondoni, A.; Massi, A.; Minghini, E.; Bertoasi, V. Tetrahedron 2004, 60, 2311.
26. Sabitha, G.; Reddy, G. S. K. K.; Reddy, C. S.; Yadav, J. S. Tetrahedron Lett. 2003, 44,
4129.
27. For a review, see: Babu, G.; Perumal, P. T. Aldrichim. Acta 2000, 16.
28. Ko, S.; Sastry, M. N. V.; Lin, C.; Yao, C.-F. Tetrahedron Lett. 2005, 46, 5771.
29. Adharvana Chari, M.; Syamasundar, K. Catal. Commun. 2005, 6, 624.
30. Maheswara, M.; Siddaiah, V.; Rao, Y. K.; Tzeng, Y. M.; Sridhar, C. J. Mol. Catal.
2006, 260, 179.
CH3
O
H5C2O
Ar
OH
H
H
O
Ar
O
Ar
O
O
- PPh3
O
P
O
+
Ph
H5C2O
H3C
H
Ph
OC2H5
3
O
H
Ph
CH3
O
5
O
H5C2O
OC2H5
3
+ 6
3
H2N
CH3
H3C
6
O
Ar
O
O
Ar
O
cyclisation
H5C2O
H3C
OC2H5
CH3
H5C2O
H3C
OC2H5
CH3
dehydration
N
H
O
HN
7
4
Scheme 1.
of Knoevenagel product 5. A second key intermediate is ester en-
amine 6, produced by condensation of the second equivalent of
the b-ketoester with ammonia. Condensation of these two frag-
ments gives intermediate 7, which subsequently cyclizes to the
1,4-dihydropyridine 4 (Scheme 1).
31. Ko, S.; Yao, C. F. Tetrahedron 2006, 62, 7293.
32. Perozo-Rondon, E.; Calvino-Casilda, V.; Martin-Aranda, R. M.; Casal, B.; Duran-
Valle, C. J.; Rojas-Cervantes, M. L. Appl. Surf. Sci. 2006, 252, 6080.
33. Lee, J. H. Tetrahedron Lett. 2005, 46, 7329.
34. Kumar, A.; Maurya, R. A. Tetrahedron 2007, 63, 1946.
35. Wang, L.-M.; Sheng, J.; Zhang, L.; Han, J.-W.; Fan, Z.; Tian, H.; Qian, C.-T.
Tetrahedron 2005, 61, 1539.
36. Debache, A.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. Tetrahedron
Lett. 2008, 49, 6119.
37. (a) Debache, A.; Boulcina, R.; Tafer, R.; Belfaitah, A.; Rhouati, S.; Carboni, B.
Chin. J. Chem. 2008, 26, 2112; (b) Debache, A.; Boulcina, R.; Belfaitah, A.;
Rhouati, S.; Carboni, B. Synlett 2008, 509.
38. A typical experimental procedure for the preparation of 1,4-dihydropyridines 4 is as
follows: A mixture of aldehyde 1 (5 mmol), ethyl acetoacetate 2 (10 mmol),
ammonium acetate 3 (10 mmol) and triphenylphosphine (20 mol %) was heated
at reflux in ethanol (10 mL) for the appropriate time (Table 2, monitored by TLC).
The reaction mixture, after being cooled to rt was poured into cold water and
extracted with ethyl acetate. The organic layer was washed with brine and water
and dried over Na2SO4. After evaporation of the solvent, the crude yellow
products were purified by crystallization from ethanol to afford 1,4-
dihydropyridines 4 in 72–95% yields.Selected data for compound 4h:Diethyl 4-
(4-bromophenyl)-2,6-dimethyl-1,4-dihydro-pyridine-3,5-dicarboxylate: Mp
162–164 °C. 1H NMR (250 MHz, CDCl3): d 1.25 (t, J = 7.1 Hz, 6H, 2CH3CH2), 2.29
(s, 6H, 2CH3), 4.10 (q, J = 7.1 Hz, 4H, 2CH3CH2), 4.96 (s, 1H, CH), 6.47 (s, 1H, NH),
7.16 (d, J = 8.4 Hz, 2H, 2CHarom.), 7.33 (d, J = 8.4 Hz, 2H, 2CHarom.). 13C NMR
(62.9 MHz, CDCl3): d 14.2, 19.3, 39.3, 59.8, 103.4, 119.8, 130.0, 130.8, 144.5,
146.9, 167.6. FT-IR (KBr): 3342, 1691, 1643, 1489, 1210, 1124, 779 cmÀ1. All the
other products were characterized by IR, 1H NMR and 13C NMR spectroscopy, and
by comparison with authentic samples.
In summary, we have reported that triphenylphosphine is a
highly efficient catalyst for the synthesis of a variety of 4-substi-
tuted-1,4-dihydropyridines by means of a three-component con-
densation of an aldehyde, ethyl acetoacetate and ammonium
acetate in one pot. This method is applicable to a wide range of
substrates, including aromatic and heterocyclic aldehydes, and
provides the corresponding 1,4-dihydropyridines in good to excel-
lent yields. The present methodology offers advantages such as re-
duced reaction times and economic viability of the catalyst,
compared with conventional methods and other catalysts.
References and notes
1. (a) Mauzeral, D.; Westheimer, F. H. J. Am. Chem. Soc. 1955, 77, 2261; (b) Baraldi,
P. G.; Chiarini, A.; Budriesi, R.; Roberti, M.; Casolar, A.; Manfredini, S.; Simoni,
D.; Zanirato, V.; Varani, K.; Borea, P. A. Drug Des. Delivery 1989, 5, 13; (c)
Baraldi, P. G.; Budriesi, R.; Cacciari, B.; Chiarini, A.; Garuti, L.; Giovanninetti, G.;
Leoni, A.; Roberti, M. Collect. Czech. Chem. Commun. 1992, 169; (d) Di Stilo, A.;
Visentin, S.; Clara, C.; Gasco, A. M.; Ermondi, G.; Gasco, A. J. Med. Chem. 1998,
41, 5393; (e) Kawase, M.; Shah, A.; Gaveriya, H.; Motohashi, N.; Sakagami, H.;
Varga, A.; Molnar, J. Bioorg. Chem. 2002, 10, 1051; (f) Suárez, M.; Verdecia, Y.;
Illescas, B.; Martínez-Alvarez, R.; Avarez, A.; Ochoa, E.; Seoane, C.; Kayali, N.;
Martín, N. Tetrahedron 2003, 59, 9179; (g) Shan, R.; Velazquez, C.; Knaus, E. E. J.
Med. Chem. 2004, 47, 254; (h) Sawada, Y.; Kayakiri, H.; Abe, Y.; Mizutani, T.;
Inamura, N.; Asano, M.; Hatori, C.; Arsmori, I.; Oku, T.; Tanaka, H. J. Med. Chem.
2004, 47, 2853.
39. Boulcina, R.; Bouacida, S.; Roisnel, T.; Debache, A. Acta Crystallogr., Sect. E 2007,
63, o3635.
40. (a) Eynde, J. J.; Delfosse, F.; Mayence, A.; Haverbeke, Y. V. Tetrahedron 1995, 51,
6511; (b) Loev, B.; Goodman, M. M.; Snader, K. M.; Tedeschi, R.; Macko, E. J.
Med. Chem. 1974, 17, 956; (c) Shaabani, A.; Rezayan, A. H.; Rahmati, A. Monatsh.
Chem. 2006, 137, 77.
2. Janis, R. A.; Triggle, D. J. J. Med. Chem. 1983, 26, 775.