Environmental Science and Technology p. 1941 - 1947 (1998)
Update date:2022-08-24
Topics:
Devlin, John F.
Klausen, Joerg
Schwarzenbach, Rene P.
Granular iron has been determined to be a potentially useful reductant for the removal of common organic contaminants from groundwater. This research is aimed at improving our understanding of the processes that control the reactivity and longevity of the iron particles when they are used for groundwater treatment. A suite of nitroaromatic compounds (NACs) including 4-chloronitrobenzene (4CINB), 4-acetylnitrobenzene (4AcNB), nitrobenzene, 2-methylnitrobenzene (2MeNB), and 2,4,6-trinitrotoluene (TNT) was used to investigate granular iron reactivity in anoxic pH 10, 0.008 M KNO3 solution. Master Builder's brand of granular iron with a surface area of about 1 m2/g was used in all experiments. The NACs were reduced rapidly to anilines that were found to sorb reasonably strongly to the solid particles and to interfere with the reduction of NACs. The granular iron was found to lose reactivity quite rapidly over the first few days of exposure and then more slowly over the next several months. Reactivity loss due to reversibly sorbed products was minimized by flushing the system with background electrolyte between experiments. Competition experiments with binary mixtures of 4CINB and each one of the other NACs were performed to investigate relative affinities of these compounds for the solid surface. Despite the overall loss in reactivity observed for the granular iron, the relative rate constants in the competition experiments appeared to remain constant in time. Granular iron has been determined to be a potentially useful reductant for the removal of common organic contaminants from groundwater. This research is aimed at improving our understanding of the processes that control the reactivity and longevity of the iron particles when they are used for groundwater treatment. A suite of nitroaromatic compounds (NACs) including 4-chloronitrobenzene (4CINB), 4-acetylnitrobenzene (4AcNB), nitrobenzene, 2-methylnitrobenzene (2MeNB), and 2,4,6-trinitrotoluene (TNT) was used to investigate granular iron reactivity in anoxic pH 10, 0.008 M KNO3 solution. Master Builder's brand of granular iron with a surface area of about 1 m2/g was used in all experiments. The NACs were reduced rapidly to anilines that were found to sorb reasonably strongly to the solid particles and to interfere with the reduction of NACs. The granular iron was found to lose reactivity quite rapidly over the first few days of exposure and then more slowly over the next several months. Reactivity loss due to reversibly sorbed products was minimized by flushing the system with background electrolyte between experiments. Competition experiments with binary mixtures of 4CINB and each one of the other NACs were performed to investigate relative affinities of these compounds for the solid surface. Despite the overall loss in reactivity observed for the granular iron, the relative rate constants in the competition experiments appeared to remain constant in time.
View MoreWudi Reaction Pharma&Chemical Co.,Ltd.
website:http://www.ruixinchem.com/
Contact:86-543-2257986
Address:Xinhai Industrial Zone, Wudi County,Shandong Province,China.
Shanghai Taibao Pharmaceutical Technology Co., Ltd(expird)
Contact:021-52217366
Address:shanghai
Chengdu Henghui Pharmaceutical Co., Ltd.(expird)
Contact:+86-28-82633229
Address:chengdu
Jinzhou Jiutai Pharmaceutical Co.,Ltd
Contact:+86-0416-5179890
Address:No.41, Taianli, Taihe District, Jinzhou, Liaoning
Hefei TNJ chemical industry co.,ltd
website:https://www.tnjchem.com
Contact:+86-551-65418695
Address:B911 Xincheng Business Center, Qianshan Road, Hefei Anhui China
Doi:10.1007/BF00956592
(1986)Doi:10.1039/c5ra15544d
(2015)Doi:10.1002/ejoc.201100754
(2011)Doi:10.1002/ejic.201800850
(2018)Doi:10.1016/S0020-1693(00)86742-0
(1985)Doi:10.1002/adsc.200505216
(2006)