X. Fan, Y. Zhang / Tetrahedron Letters 43 (2002) 1863–1865
1865
M. Bull. Chem. Soc. Jpn. 1967, 40, 2936; (g) Allen, C. F.;
Wilson, C. V. Organic Synthesis; Wiley: New York, 1947;
Vol. 27, p. 22.
a-haloester to give an enolate, see: (a) Zhang, Y. M.; Liu,
T. C.; Lin, R. H. Synth. Commun. 1988, 18, 2003; (b)
Molander, G. A.; Hahn, G. J. Org. Chem. 1986, 51, 1135.
10. Phenacyl azides were conveniently prepared from
phenacyl bromides and sodium azide according to the
following literature: Boyer, H. J.; Straw, D. J. J. Am.
Chem. Soc. 1953, 75, 1642.
4
. Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc.
1
980, 102, 2693.
5
. For reviews, see: (a) Krief, A.; Laval, A. M. Chem. Rev.
1999, 99, 745; (b) Molander, G. A. Acc. Chem. Res. 1998,
31, 603; (c) Molander, G. A.; Harris, C. R. Tetrahedron
1998, 54, 3321; (d) Molander, G. A.; Harris, C. R. Chem.
11. Representative procedure: A solution of phenacyl azide (1
mmol) in dry THF (3 mL) was added dropwise to a
Rev. 1996, 96, 307; (e) Imamota, T. In Lanthanides in
Organic Synthesis; Academic Press: London, 1994; Chap-
ter 4; (f) Molander, G. A. Chem. Rev. 1992, 92, 29; (g)
Curran, D. P.; Fevig, T. L.; Jasperse, C. P.; Totleben, M.
J. Synlett 1992, 943.
. (a) Souppe, J.; Danon, L.; Namy, J. L.; Kagan, H. B. J.
Organomet. Chem. 1983, 250, 227; (b) Zhang, Y. M.; Lin,
R. H. Synth. Commun. 1987, 17, 329; (c) Mukaiyama, T.;
Yoyozu, K.; Kato, K.; Yamada, T. Chem. Lett. 1982,
solution of SmI (2.5 mmol) in THF (20 mL) at room
2
temperature under a nitrogen atmosphere. The deep blue
color of the solution changed to yellow immediately.
After stirring for ca. 5 min, the reaction mixture was
quenched with dilute HCl (0.1 mol/L, 3 mL) and
extracted with ether (3×20 mL). The organic phase was
6
successively washed with a saturated solution of Na
(10 mL), saturated brine (10 mL), and dried over anhy-
drous Na SO . The solvent was removed under reduced
S O
2 2 3
2
4
1
81; (d) Kende, A. S.; Mendoza, J. S. Tetrahedron Lett.
pressure to give the crude product, which was purified by
preparative TLC using ethyl acetate and cyclohexane
(1:6) as eluant to yield 2,4-diphenylpyrrole (72%), mp
1
991, 32, 1699.
7
. (a) Natale, N. R. Tetrahedron Lett. 1982, 23, 5009; (b)
Benati, L.; Monievecohi, P. C.; Nanni, D.; Spagnolo, P.;
Volta, M. Tetrahedron Lett. 1995, 36, 7313; (c) Gou-
laouic-Dubois, C.; Hesse, M. Tetrahedron Lett. 1995, 36,
3a
166–169°C (lit. 166–170°C); IR (KBr): w 3350 (NH)
−
1 1
cm ; H NMR (400 MHz, DMSO): l 6.95 (t, 1H, J=2
Hz), 7.10–7.19 (m, 2H), 7.30–7.39 (m, 5H), 7.61 (d, 2H,
J=7.2 Hz), 7.68 (d, 2H, J=7.6 Hz), 11.3 (bs, 1H, NH);
7
427.
13
8
. For electrochemical reduction of phenacyl azides leading
to the formation of 2-aroyl-4-arylimidazoles rather than
2
C NMR (100 MHz, DMSO): l 103.7, 117.1, 123.9,
124.9, 125.2, 125.5, 126.2, 129.0, 129.2, 132.7, 133.1,
+
,4-diarylpyrroles, see: Batanero, B.; Escudero, J.; Barba,
136.2; MS m/z (%): 219 (M , 100), 191 (13), 116 (17), 115
F. Org. Lett. 1999, 1, 1521.
(21), 89 (6), 77 (5). Anal. calcd for C16
5.98; N, 6.39. Found: C, 87.57; H, 6.08; N, 6.34.
H13N: C, 87.67; H,
9
. For SmI -mediated dehalogenation of a-haloketone or
2